Abstract

We have demonstrated broadening of the phase-matching bandwidth in a periodically poled Ti:LiNbO3 (Ti:PPLN) channel waveguide (Λ=16.6 µm) by using a temperature-gradient-control technique. With this technique, we have achieved a second-harmonic phase-matching bandwidth of more than 13 nm in a 74-mm-long Ti:PPLN waveguide, which has a 0.21-nm phase-matching bandwidth at a uniform temperature.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435�??346 (1993).
    [CrossRef]
  2. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,�?? Appl. Phys. B Special Issue on Integrated Optics, 73, 501�??504 (2001).
  3. M. A. Arbore, O. Marco, and M. M. Fejer, �??Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,�?? Opt. Lett.22, 865�??867 (1997).
    [CrossRef] [PubMed]
  4. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, �??Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,�?? J. Opt. Soc. Am. B 17, 1420�??1437 (2000).
    [CrossRef]
  5. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, �??Wavelength-and timeselective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,�?? IEEE Photon. Technol. Lett. 15, 978�??980 (2003).
    [CrossRef]
  6. R. Regener and W. Sohler, �??Loss in low-finesse LiNbO3 optical waveguide resonators,�?? Appl. Phys. B 36, 143�??145 (1985).
    [CrossRef]
  7. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, �??Broadening of the phase-matching bandwidth in quasiphase-matched second-harmonic generation,�?? IEEE J. Quantum Electron. 30, 1596�??1604 (1994).
    [CrossRef]
  8. S. Helmfrid and G. Arvidsson, �??Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,�?? J. Opt. Soc. Am. B 8, 797�??804 (1991).
    [CrossRef]
  9. T. Suhara and H. Nishigara, �??Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,�?? IEEE J. Quantum Electron. 26, 1265�??1276 (1990).
    [CrossRef]
  10. M. L. Bortz, M. Fujimura, and M. M. Fejer, �??Increased acceptance bandwidth for quasi-phasematched second harmonic generation in LiNbO3 waveguides,�?? Electron. Lett. 30, 34�??35 (1994).
    [CrossRef]
  11. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee are preparing a manuscript to be called �??Reshaping of second harmonic curve in Ti:PPLN waveguide by a local gradient-temperature-control technique.�??

Appl. Phys. B (2)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,�?? Appl. Phys. B Special Issue on Integrated Optics, 73, 501�??504 (2001).

R. Regener and W. Sohler, �??Loss in low-finesse LiNbO3 optical waveguide resonators,�?? Appl. Phys. B 36, 143�??145 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435�??346 (1993).
[CrossRef]

Electron. Lett. (1)

M. L. Bortz, M. Fujimura, and M. M. Fejer, �??Increased acceptance bandwidth for quasi-phasematched second harmonic generation in LiNbO3 waveguides,�?? Electron. Lett. 30, 34�??35 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, �??Broadening of the phase-matching bandwidth in quasiphase-matched second-harmonic generation,�?? IEEE J. Quantum Electron. 30, 1596�??1604 (1994).
[CrossRef]

T. Suhara and H. Nishigara, �??Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,�?? IEEE J. Quantum Electron. 26, 1265�??1276 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, �??Wavelength-and timeselective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,�?? IEEE Photon. Technol. Lett. 15, 978�??980 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Other (1)

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee are preparing a manuscript to be called �??Reshaping of second harmonic curve in Ti:PPLN waveguide by a local gradient-temperature-control technique.�??

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SHG curve at room temperature (25 °C) with coupled fundamental power of 1.16 mW. The maximum conversion efficiency is measured to be 890%/W. Scattering and solid curve, experimental and theoretical results, respectively. Inset, theoretical refractive index (n SH-n P) modulation along the Ti waveguides.

Fig. 2.
Fig. 2.

Experimental setup for SHG. ECL and PC denote extended-cavity laser and polarization controller, respectively.

Fig. 3.
Fig. 3.

Circles, temperature at each position of sample holder; triangles, SH phase-matching wavelength for different sample temperatures.

Fig. 4.
Fig. 4.

SH curve for different temperature gradients. (a) Intensity mapping for theoretical simulation; highest intensity (red) to lowest intensity (blue). (b) Theoretical results for SH curves for three different temperature gradients. (c) Experimental results for SH curves for three different temperature gradients.

Fig. 5.
Fig. 5.

SH efficiency and SH bandwidth for different temperature gradients. Triangles and circles, SH efficiency and SH bandwidth, respectively (measured with 1 mW of pump wave). Curves, theoretical results. Solid and dotted curves, SH efficiency and SH bandwidth, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A 1 d z = i κ A 3 A 1 * exp ( i Δ k z ) ,
d A 3 d z = i κ A 1 2 exp ( i Δ k z ) ,
T ( z ) = T ( 0 ) + [ T ( L ) T ( 0 ) ] ( z L ) ,
Δ k ( z ) = 4 π λ P [ n SH ( T ) n P ( T ) ] 2 π Λ ( z ) ,
δ ( Δ k Λ ) = δ ( Δ k ) Λ + Δ k δ Λ
= 2 π [ d n SH d T d n P d T n SH n P + α ] δ T ,

Metrics