Abstract

In this paper we present a novel approach to temperature sensing with optoelectronic devices which relies on the usage of bare silicon as the transducing material. The device is composed by a single mode input waveguide, a MMI region where a number of higher order modes is also allowed to propagate and two output waveguides. The refractive index variation in the MMI section due to temperature shifts induces different phase velocities of the various propagating modes. The position of the input and output waveguides together with the length and width of the MMI section are chosen in order to maximize the sensitivity of the device. Analytical calculations are presented together with BPM simulations aimed to the maximization of the sensitivity of the sensor as a function of its geometries.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
    [Crossref]
  2. Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
    [Crossref]
  3. A.D Kersey and T.A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photon, Technol, Lett. 4, 1183–1185, (1992)
    [Crossref]
  4. A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)
  5. A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
    [Crossref]
  6. G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
    [Crossref]
  7. G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
    [Crossref]
  8. S.P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” IEEE J. Lightwave Technol. 16, 1851–1853 (1998)
    [Crossref]
  9. H.F. Talbot, “Facts relating to optical science No. IV” London Edimburgh Philosophical Mag., J. Sci. 9, 401–407, (1836)
  10. D. Marcuse, Light Transmission Optics, (New York, Van Nostrand Reinhold, 1972).
  11. O. Bryngdahl, “Image formation using self-imaginq techniques,” J. Opt. Soc. Am. 63, 416–419 (1973)
    [Crossref]
  12. R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Optics Commun. 13, 259–264 (1975)
    [Crossref]
  13. L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995)
    [Crossref]
  14. G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

2002 (1)

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

2001 (2)

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

2000 (1)

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
[Crossref]

1998 (2)

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

S.P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” IEEE J. Lightwave Technol. 16, 1851–1853 (1998)
[Crossref]

1995 (2)

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995)
[Crossref]

1992 (1)

A.D Kersey and T.A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photon, Technol, Lett. 4, 1183–1185, (1992)
[Crossref]

1975 (1)

R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Optics Commun. 13, 259–264 (1975)
[Crossref]

1973 (1)

1836 (1)

H.F. Talbot, “Facts relating to optical science No. IV” London Edimburgh Philosophical Mag., J. Sci. 9, 401–407, (1836)

Alvarez-Herrero, A.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
[Crossref]

Belenguer, T.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
[Crossref]

Bellucci, M.

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

Bennion, I.

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Berkoff, T.A.

A.D Kersey and T.A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photon, Technol, Lett. 4, 1183–1185, (1992)
[Crossref]

Brady, G.

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Breglio, G.

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Bryngdahl, O.

Calabrò, A.

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

Cocorullo, G.

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

Coppola, G.

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Corte, F.G. Della

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

Cusano, A.

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

Cutolo, A.

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

de Boer, C. R.

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Giordano, M.

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

Guerrero, H.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
[Crossref]

Iodice, M.

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Irace, A.

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Jackson, D.A

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Kalli, K.

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Kersey, A.D

A.D Kersey and T.A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photon, Technol, Lett. 4, 1183–1185, (1992)
[Crossref]

Levy, D.

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
[Crossref]

Marcuse, D.

D. Marcuse, Light Transmission Optics, (New York, Van Nostrand Reinhold, 1972).

Nasser, J.

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

Nicolais, L.

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

Pennings, E.C.M.

L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995)
[Crossref]

Pogossian, S.P.

S.P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” IEEE J. Lightwave Technol. 16, 1851–1853 (1998)
[Crossref]

Rao, Y.J

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Rendina, I.

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

Russo, M.

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

Sarro, P. M.

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Sarro, P.M.

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

Soldano, L.B.

L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995)
[Crossref]

Talbot, H.F.

H.F. Talbot, “Facts relating to optical science No. IV” London Edimburgh Philosophical Mag., J. Sci. 9, 401–407, (1836)

Ulrich, R.

R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Optics Commun. 13, 259–264 (1975)
[Crossref]

Vescan, L.

S.P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” IEEE J. Lightwave Technol. 16, 1851–1853 (1998)
[Crossref]

Vonsovici, A.

S.P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” IEEE J. Lightwave Technol. 16, 1851–1853 (1998)
[Crossref]

Webb, D.J

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Zhang, L.

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

Electron. Lett. (1)

Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electron. Lett. 31, 1009–1010 (1995)
[Crossref]

IEEE J. Lightwave Technol. (2)

S.P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” IEEE J. Lightwave Technol. 16, 1851–1853 (1998)
[Crossref]

L.B. Soldano and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” IEEE J. Lightwave Technol. 13, 615–627 (1995)
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina, and P.M. Sarro, “Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,” IEEE J. Sel. Top. Quantum Electron. 4, 983–989 (1998)
[Crossref]

IEEE Photon, Technol, Lett. (1)

A.D Kersey and T.A. Berkoff, “Fiber-optic Bragg-grating differential-temperature sensor,” IEEE Photon, Technol, Lett. 4, 1183–1185, (1992)
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Alvarez-Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000)
[Crossref]

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (1)

A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, and A. Cutolo, “Fiber optic sensing system for smart materials and structures,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401–409, (2001)

J. Opt. Soc. Am. (1)

London Edimburgh Philosophical Mag., J. Sci. (1)

H.F. Talbot, “Facts relating to optical science No. IV” London Edimburgh Philosophical Mag., J. Sci. 9, 401–407, (1836)

Optics Commun. (1)

R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Optics Commun. 13, 259–264 (1975)
[Crossref]

Proc. SPIE. (1)

G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci, and M. Iodice “Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,” Proc. SPIE. 4293, 155–161 (2001)
[Crossref]

Proceedings of IEEE Sensors (1)

A. Cusano, G. Breglio, M. Giordano, M. Russo, and J. Nasser, “Optoelectronic refractive index measurements: application for smart polymer processing,” Proceedings of IEEE Sensors 2, 1171–1175 (2002)
[Crossref]

Other (2)

D. Marcuse, Light Transmission Optics, (New York, Van Nostrand Reinhold, 1972).

G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, and P. M. Sarro “Temperature Optical Sensor based on all-silicon Bimodal waveguide,” Proc. SESENS (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Top view of the MMI device with input and output waveguides and the active region

Fig. 2.
Fig. 2.

Principle of self-imaging

Fig. 3.
Fig. 3.

Example of multiple images on an optimized 4-mode MMI sensor

Fig. 4.
Fig. 4.

Transfer function of the sensor. Comparison between the MMI and the bi-modal solution

Tables (1)

Tables Icon

Table 1. Summary of the optimization parameters and their investigated range

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ ( y , 0 ) = ν c ν ψ ν ( y )
c ν = Ψ ( y , 0 ) ψ ν ( y ) d y ψ ν 2 ( y ) d y
Ψ ( y , 0 ) = ν = 0 m 1 c ν ψ ν ( y )
Ψ ( y , z ) = ν = 0 m 1 c ν ψ ν ( y ) exp [ j ν ( ν + 2 ) π 3 L π L ]
Δ n = 1.84 · 10 4 Δ T
Δ I Δ T % = 30
S = I 2 I 1 I 2 + I 1 T = T 0 I 2 I 1 I 2 + I 1 T = T 0 + Δ T = 1 f ( W , L , y 0 , y 1 , y 2 )

Metrics