Abstract

We present a white-light spectral interferometric technique employing a low-resolution spectrometer for measurement of the dispersion of the group and phase modal birefringence in an elliptical-core optical fiber over a wide spectral range. The technique utilizes a tandem configuration of a Michelson interferometer and the optical fiber to record a series of spectral interferograms and to measure the equalization wavelengths as a function of the optical path difference in the Michelson interferometer, or equivalently, the wavelength dependence of the group modal birefringence in the optical fiber. Applying a polynomial fit to the measured data, the wavelength dependence of the phase modal birefringence can also be determined.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. C. Rashleigh, �??Wavelength dependence of birefringence in highly birefringent fibers,�?? Opt. Lett. 7, 294�??296 (1982).
    [CrossRef] [PubMed]
  2. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, �??Birefringence dispersion measurement in optical fibers by wavelength scanning,�?? Opt. Lett. 20, 869�??871 (1995).
    [CrossRef] [PubMed]
  3. Y. J. Rao and D. A. Jackson, �??Recent progress in fiber optic low-coherence interferometry,�?? Meas. Sci. Technol. 7 981�??999 (1996).
    [CrossRef]
  4. D. A. Flavin, R. McBride, and J. D. C. Jones, �??Dispersion of birefringence and differential group delay in polarization-maintaining fiber,�?? Opt. Lett. 27, 1010�??1012 (2002).
    [CrossRef]
  5. W. J. Bock and W. Urba�?czyk, �??Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of ellectronically scanned shearing type interferometry,�?? Appl. Opt. 32, 5841�??5848 (1993).
    [CrossRef] [PubMed]
  6. W. Urba�?czyk, T. Martynkien, and W. J. Bock, �??Dispersion effects in elliptical-core highly birefringent fibers,�?? Appl. Opt. 40, 1911�??1920 (2001).
    [CrossRef]
  7. P. Hlubina, T. Martynkien, and W. Urba�?czyk, �??Measurements of intermodal dispersion in few-mode optical fibers using a spectral-domain white-light interferometric method,�?? Meas. Sci. Technol. 14, 784�??789 (2003).
    [CrossRef]
  8. P. Hlubina, �??White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibers,�?? Opt. Commun. 218, 283�??289 (2003).
    [CrossRef]
  9. P. Hlubina, �??Spectral-domain intermodal interference under general measurement conditions,�?? Opt. Commun. 210, 225�??232 (2002).
    [CrossRef]

Appl. Opt.

Meas. Sci. Technol.

P. Hlubina, T. Martynkien, and W. Urba�?czyk, �??Measurements of intermodal dispersion in few-mode optical fibers using a spectral-domain white-light interferometric method,�?? Meas. Sci. Technol. 14, 784�??789 (2003).
[CrossRef]

Y. J. Rao and D. A. Jackson, �??Recent progress in fiber optic low-coherence interferometry,�?? Meas. Sci. Technol. 7 981�??999 (1996).
[CrossRef]

Opt. Commun.

P. Hlubina, �??White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical-core optical fibers,�?? Opt. Commun. 218, 283�??289 (2003).
[CrossRef]

P. Hlubina, �??Spectral-domain intermodal interference under general measurement conditions,�?? Opt. Commun. 210, 225�??232 (2002).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup with a nondispersive Michelson interferometer and a low-resolution spectrometer to measure the dispersion of birefringence in an optical fiber under test.

Fig. 2.
Fig. 2.

Example of the spectral interferogram recorded for the OPD Δ M=2376 µm together with the theoretical spectral interferogram (solid line).

Fig. 3.
Fig. 3.

Measured group modal birefringence as a function of wavelength together with a polynomial fit (solid line).

Fig. 4.
Fig. 4.

Phase modal birefringence determined as a function of wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( R , Δ M ; λ ) = I 0 ( R ; λ ) { 1 + ( 1 2 ) V ( R ; λ ) exp { ( π 2 2 ) [ ( Δ s f g ( z ; λ ) ± Δ M ) Δ λ R λ 2 ] 2 }
× cos [ Δ β s f ( λ ) z ± ( 2 π λ ) Δ M ] } ,

Metrics