Abstract

A single optical fiber probe has been used to trap a solid 2 µm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin,�??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997).
    [CrossRef] [PubMed]
  2. A. Ashkin,�??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  3. J.E. Bjorkholm, R.R. Freeman, A. Ashkin, D.B. Pearson, "Observation of focusing of neutral atoms by dipole forces of resonance radiation pressure,�?? Phys. Rev. Lett. 41, 1361-1364 (1978).
    [CrossRef]
  4. J.-C. Meiners and S.R. Quake, �??Femtonewton force spectroscopy of single extended DNA molecules,�?? Phys. Rev. Lett. 84, 5014-5017 (2000).
    [CrossRef] [PubMed]
  5. Y. Xin-Cheng, L. Zhao-Lin, G. Hong-Lian, C. Bing-Ying, Z. Dao-Zhong, "Effects of spherical aberration on optical trapping forces for Rayleigh particles,�?? Chin. Phys. Lett. 18, 432-434 (2001).
    [CrossRef]
  6. A. Constable, J.Kim, J.Mervis, F. Zarinetchi, M. Prentiss, "Demonstration of a fiber-optical light force trap,�?? Opt. Lett. 18, 1867-1869 (1993).
    [CrossRef] [PubMed]
  7. E. R. Lyons and G. J. Sonek, �??Demonstration and modeling of a tapered lensed optical fiber trap,�?? Proc. Of SPIE 2383, 186-198 (1995).
    [CrossRef]
  8. S.D. Collins, R.J. Baskin, and D.G. Howitt, �??Microinstrument gradient force optical trap,�?? Appl. Opt. 38, 6068-6074 (1999).
    [CrossRef]
  9. R.C. Gauthier and A. Frangioudakis, �??Optical levitation particle delivery system for a dual beam fiber optic trap,�?? Appl. Opt. 39, 26-33 (2000).
    [CrossRef]
  10. K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, �??Single laser beam fiber optic trap,�?? Opt. Quantum Electron. 33, 99-106 (2001).
    [CrossRef]
  11. H. He, N.R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 207-223 (1995).
    [CrossRef]
  12. K.T. Gahagan and G.A. Swartzlander, Jr., �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827-829 (1996).
    [CrossRef] [PubMed]
  13. M. Reicherter,T. Haist, E.U. Wagemann, and H.J. Tiziani, �??Optical particle trapping with computergenerated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  14. A.T. O�??Neil and M.J. Padgett, �??Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,�?? Opt. Commun. 185, 139-143 (2000).
    [CrossRef]
  15. D.W. Zhang and X.-C. Yuan, �??Optical doughnut for optical tweezers,�?? Opt. Lett. 28, 740-742 (2003).
    [CrossRef] [PubMed]
  16. A. Bouhelier, J. Renger, M.R. Beversluis and L. Novotny, �??Plasmon-coupled tip �??enhanced near-field optical microscopy," J. of Microscopy 210, 220-224 (2003).
    [CrossRef]
  17. T. Grosjean and D. Courjon, �??Immaterial tip concept by light confinement,�?? J. Microscopy 202, 273-278 (2001).
    [CrossRef]
  18. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, �??Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,�?? Jpn. J. Appl. Phys. 31, L1302-L1304 (1992).
    [CrossRef]
  19. R.S. Taylor, K.E. Leopold, M. Wendman, G.Gurley, and V. Elings, �??Bent fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,�?? Proc. SPIE 3009, 119-129 (1997).
    [CrossRef]
  20. R.S. Taylor and C. Hnatovsky, �??High resolution index of refraction profiling of optical waveguides,�?? Proc. SPIE 4833, 811-819 (2003).
    [CrossRef]
  21. R.S. Taylor and K.E. Leopold, �??Combined AFM-NSOM scanning probe microscopy for photonic applications,�?? Microscopy and Analysis 15-17 (May, 1999).
  22. R.S. Taylor, J. Li, M. Phaneuf, "Comparison of focussed ion-beam hole drilling and slicing for NSOM aperture formation," Near-Field Optics, 2nd Asia-Pacific Workshop on Near-Field Optics, World Scientific, Beijing, 181-187 (1999)
  23. R. Taylor, K. Leopold, J. Fraser, Y. Feng and M. Buchanan, �??Near-Field scanning optical microscopy probes for high resolution beam scans of near-infrared lasers and waveguides,�?? Proc. SPIE 3491, 842-847 (1998).
    [CrossRef]
  24. S. Sato, M. Ohyumi, H. Shibata and H. Inaba, �??Optical trapping of small particles using a 1.3-μm compact InGaAsP diode laser,�?? Opt. Lett. 16, 282-284 (1991).
    [CrossRef] [PubMed]
  25. R.K. Iler, The Chemistry of Silica, (Wiley, New York, 1979).
  26. T.M. Squires and M.P. Brenner, "Like-charge attraction and hydrodynamic interaction," Phys. Rev. Lett. 85, 4976-4979 (2000).
    [CrossRef] [PubMed]
  27. L. Novotny, R.X. Bian and X.S. Xie,"Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  28. L. Thiery, N. Marini, J-P Prenel, M. Spajer, C. Bainier and D. Courjon, �??Temperature profile measurements of near-field optical microscopy fiber tips by means of sub-micronic thermocouple,�?? Int. J. Therm. Sci. 39, 519-525 (2000).
    [CrossRef]
  29. A.E. Larson and D.G. Grier, �??Like-charges attractions in metastable colloidal crystalites,�?? Nature 385, 230-233 (1997).
    [CrossRef]
  30. L. Aigouy, Y. De Wilde and M. Mortier, �??Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,�?? Appl. Phys. Lett. 83, 147-149 (2003).
    [CrossRef]
  31. T.A. Klar, S. Jakobs, M. Dyba, A. Egner and S.W. Hell, �??Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,�?? Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
    [CrossRef] [PubMed]
  32. T. Watanabe, Y. Iketaki, T. Omatsu, K.Yamamoto, S. Ishiuchi, M. Sakai and M. Fujii, �??Two-color far-field super-resolution microscope using a doughnut beam,�?? Chem. Phys. Lett. 71, 634-639 (2003).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Aigouy, Y. De Wilde and M. Mortier, �??Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,�?? Appl. Phys. Lett. 83, 147-149 (2003).
[CrossRef]

Chem. Phys. Lett.

T. Watanabe, Y. Iketaki, T. Omatsu, K.Yamamoto, S. Ishiuchi, M. Sakai and M. Fujii, �??Two-color far-field super-resolution microscope using a doughnut beam,�?? Chem. Phys. Lett. 71, 634-639 (2003).
[CrossRef]

Chin. Phys. Lett.

Y. Xin-Cheng, L. Zhao-Lin, G. Hong-Lian, C. Bing-Ying, Z. Dao-Zhong, "Effects of spherical aberration on optical trapping forces for Rayleigh particles,�?? Chin. Phys. Lett. 18, 432-434 (2001).
[CrossRef]

Int. J. Therm. Sci.

L. Thiery, N. Marini, J-P Prenel, M. Spajer, C. Bainier and D. Courjon, �??Temperature profile measurements of near-field optical microscopy fiber tips by means of sub-micronic thermocouple,�?? Int. J. Therm. Sci. 39, 519-525 (2000).
[CrossRef]

J. Microscopy

T. Grosjean and D. Courjon, �??Immaterial tip concept by light confinement,�?? J. Microscopy 202, 273-278 (2001).
[CrossRef]

J. Mod. Opt.

H. He, N.R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,�?? J. Mod. Opt. 42, 207-223 (1995).
[CrossRef]

J. of Microscopy

A. Bouhelier, J. Renger, M.R. Beversluis and L. Novotny, �??Plasmon-coupled tip �??enhanced near-field optical microscopy," J. of Microscopy 210, 220-224 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, �??Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,�?? Jpn. J. Appl. Phys. 31, L1302-L1304 (1992).
[CrossRef]

Microscopy and Analysis

R.S. Taylor and K.E. Leopold, �??Combined AFM-NSOM scanning probe microscopy for photonic applications,�?? Microscopy and Analysis 15-17 (May, 1999).

Nature

A.E. Larson and D.G. Grier, �??Like-charges attractions in metastable colloidal crystalites,�?? Nature 385, 230-233 (1997).
[CrossRef]

Near-Field Optics

R.S. Taylor, J. Li, M. Phaneuf, "Comparison of focussed ion-beam hole drilling and slicing for NSOM aperture formation," Near-Field Optics, 2nd Asia-Pacific Workshop on Near-Field Optics, World Scientific, Beijing, 181-187 (1999)

Opt. Commun.

A.T. O�??Neil and M.J. Padgett, �??Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,�?? Opt. Commun. 185, 139-143 (2000).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

K. Taguchi, K. Atsuta, T. Nakata, and M. Ikeda, �??Single laser beam fiber optic trap,�?? Opt. Quantum Electron. 33, 99-106 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin,�??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

J.E. Bjorkholm, R.R. Freeman, A. Ashkin, D.B. Pearson, "Observation of focusing of neutral atoms by dipole forces of resonance radiation pressure,�?? Phys. Rev. Lett. 41, 1361-1364 (1978).
[CrossRef]

J.-C. Meiners and S.R. Quake, �??Femtonewton force spectroscopy of single extended DNA molecules,�?? Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

T.M. Squires and M.P. Brenner, "Like-charge attraction and hydrodynamic interaction," Phys. Rev. Lett. 85, 4976-4979 (2000).
[CrossRef] [PubMed]

L. Novotny, R.X. Bian and X.S. Xie,"Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Proc. Natl. Acad. Sci.

A. Ashkin,�??Optical trapping and manipulation of neutral particles using lasers,�?? Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

T.A. Klar, S. Jakobs, M. Dyba, A. Egner and S.W. Hell, �??Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,�?? Proc. Natl. Acad. Sci. USA 97, 8206-8210 (2000).
[CrossRef] [PubMed]

Proc. SPIE

R. Taylor, K. Leopold, J. Fraser, Y. Feng and M. Buchanan, �??Near-Field scanning optical microscopy probes for high resolution beam scans of near-infrared lasers and waveguides,�?? Proc. SPIE 3491, 842-847 (1998).
[CrossRef]

R.S. Taylor, K.E. Leopold, M. Wendman, G.Gurley, and V. Elings, �??Bent fiber near-field scanning optical microscopy probes for use with commercial atomic-force microscopes,�?? Proc. SPIE 3009, 119-129 (1997).
[CrossRef]

R.S. Taylor and C. Hnatovsky, �??High resolution index of refraction profiling of optical waveguides,�?? Proc. SPIE 4833, 811-819 (2003).
[CrossRef]

E. R. Lyons and G. J. Sonek, �??Demonstration and modeling of a tapered lensed optical fiber trap,�?? Proc. Of SPIE 2383, 186-198 (1995).
[CrossRef]

Other

R.K. Iler, The Chemistry of Silica, (Wiley, New York, 1979).

Supplementary Material (1)

» Media 1: MOV (5783 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic layout of the experimental apparatus.

Fig. 2.
Fig. 2.

Scanning electron microscope image of a selectively chemically etched conical tapered Fibercore Inc. probe tip showing a hollow central region.

Fig. 3.
Fig. 3.

NSOM beam scans and section analysis at the output of an uncoated hollow-tipped Fibercore Inc. probe in air using an unpolarized λ=633nm He-Ne laser. The NSOM probe aperture was 140 nm. The NSOM beam scans were made at heights of (a) 0 nm, (b) 420 nm, (c) 1120 nm and (d) 1960 nm above the probe tip exit surface. The distance between the red markers is ≈1.9 µm.

Fig. 4.
Fig. 4.

(2.5Mb) Real-time movie showing 3-D trapping of a 2µm diameter solid glass bead in water using a single selectively etched ≈20µm diameter hollow tipped fiber probe. The λ=1.32 µm laser power coupled into the fiber was ≈10mW. The direction of gravity is into the screen. The video shows that when the laser beam was blocked the bead moves back to the fiber. When the laser beam was unblocked the bead quickly (fraction of a second) moved to the 1µm tip to bead separation. The remainder of the video shows the fiber probe and bead being translated in the water at speeds of ≈20 µm/s. The video clip moves around and is somewhat noisy since a video camcorder was used to record the signal from a monitor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F D = 6 πηav

Metrics