Abstract

Based on a recent formulation of the V–parameter of a photonic crystal fiber we provide numerically based empirical expressions for this quantity only dependent on the two structural parameters—the air hole diameter and the hole-to-hole center spacing. Based on the unique relation between the V–parameter and the equivalent mode field radius we identify how the parameter space for these fibers is restricted in order for the fibers to remain single mode while still having a guided mode confined to the core region.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  2. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botton, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  4. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  5. D. Marcuse, �??Gaussian approximation of the fundamental modes of graded-index fibers,�?? J. Opt. Soc. Am. 68, 103 (1978).
    [CrossRef]
  6. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, �??Modal cut-off and the V�??parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879 (2003).
    [CrossRef] [PubMed]
  7. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett. 27, 1684 (2002).
    [CrossRef]
  8. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, �??Experimental investigation of cut-off phenomena in non-linear photonic crystal fibers,�?? Opt. Lett. 28, 1882 (2003).
    [CrossRef] [PubMed]
  9. M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, �??Mode-Field Radius of Photonic Crystal Fibers Expressed by the V�??parameter,�?? Opt. Lett. 28, 2309 (2003).
    [CrossRef] [PubMed]
  10. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botton, and M. J. Steel, �??Confinement losses in microstructured optical fibers,�?? Opt. Lett. 26, 1660 (2001).
    [CrossRef]
  11. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, �??Microstructured optical fibers: where�??s the edge?,�?? Opt. Express 10, 1285 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285</a>
    [CrossRef] [PubMed]
  12. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, �??Demonstration of ultra-flattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>
    [CrossRef] [PubMed]
  13. N. A. Mortensen and J. R. Folkenberg, �??Low-loss criterion and effective area considerations for photonic crystal fibers,�?? J. Opt. A: Pure Appl. Opt. 5, 163 (2003).
    [CrossRef]
  14. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single mode photonic crystal fibre,�?? Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]

J. Opt. A: Pure Appl. (1)

N. A. Mortensen and J. R. Folkenberg, �??Low-loss criterion and effective area considerations for photonic crystal fibers,�?? J. Opt. A: Pure Appl. Opt. 5, 163 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (7)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

left panel shows V PCF calculated from Eq. (1) for d/Λ ranging from 0.20 (lowest curve) to 0.70 in steps of 0.05. The dashed line indicates V PCF=π. The right panel shows the relative equivalent mode-field radius, w PCF/Λ plotted as function of V PCF for each of the 9 curves in the left panel. The inset shows a schematic drawing of the considered PCF structure.

Fig. 2.
Fig. 2.

The left panel shows curves for constant values of V PCF in a normalized wavelength versus relative hole-size plot. The open circles indicate calculated data points with full lines to guide the eye. Similarly, the right panel shows curves for constant relative equivalent mode-field radius.

Fig. 3.
Fig. 3.

Plot of the parameter space in terms of relative hole size and normalized wavelength divided into three regions by the boundaries defined byV PCF=1 andV PCF=π. In the upper red area the mode penetrates deeply into the cladding region and in lower blue region the structure supports a higher-order mode.

Fig. 4.
Fig. 4.

Plot of V PCF as a function of relative wavelength λ/Λ for d/Λ ranging from 0.20 (lowest curve) to 0.80 in steps of 0.05.

Fig. 5.
Fig. 5.

Plot of V PCF in the λ→0 limit as function of the relative air hole size (open circles). The full red line represents a fit to the data points and the horizontal dash line indicated the ESM limit V PCF=π. The insert shows a close-up of the intersection with the vertical line indicating the air hole size d/Λ≃0.43.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V PCF = 2 π Λ λ n FM 2 ( λ ) n FSM 2 ( λ )
V PCF = Λ λ λ z c ( λ )
V PCF ( λ Λ , d Λ ) = A ( d Λ ) B ( d Λ ) × exp [ C ( d Λ ) × λ Λ ] + 1
A ( d Λ ) = d Λ + 0.457 + 3.405 × d Λ 0.904 d Λ
B ( d Λ ) = 0.200 × d Λ + 0.100 + 0.027 × ( 1.045 d Λ ) 2.8
C ( d Λ ) = 0.630 × exp ( 0.755 0.171 + d Λ )
lim λ 0 V PCF ( λ Λ , d Λ ) = A ( d Λ ) B ( d Λ ) + 1 = π .

Metrics