Abstract

Conventional optical coherence tomography is based on A-scans, i.e., the fast scan direction is the z-direction. While this technique has been successfully demonstrated for two-dimensional cross sectional imaging of various tissues, it is rather slow if three-dimensional information is to be obtained. We report on a new technique that combines the transverse scanning approach of a confocal scanning laser ophthalmoscope with the depth sectioning capability of OCT. A stable high-frequency carrier is generated by use of an acousto optic modulator, and high frame rate is obtained by using a resonant scanning mirror for the priority scan (x-direction). Our prototype instrument records 64 transverse images consisting of 256×128 pixels in 1.2 seconds, thus providing the fastest retinal 3D OCT scanning system reported so far. We demonstrate the capabilities of our system by measuring and imaging the fovea and the optic nerve head region of healthy human volunteers in vivo.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991)
    [CrossRef] [PubMed]
  2. B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).
  3. A. F. Fercher and C. K. Hitzenberger, "Optical Coherence Tomography," Progr. Opt. 44, 215-302 (2002).
    [CrossRef]
  4. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J.G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
    [PubMed]
  5. W. Drexler, O. Findl, R. Menapace, A. Kruger, A. Wedrich, G. Rainer, A. Baumgartner, C. K. Hitzenberger, A. F. Fercher, "Dual beam optical coherence tomography: Signal identification for ophthalmologic diagnosis," J. Biomed. Opt. 3, 55-65 (1998).
    [CrossRef] [PubMed]
  6. R. Lattanzio, R. Brancato, R. Pierro, F. Bandello, B. Iaccher, T. Fiore, G. Maestranzi, "Macular thickness measured by optical coherence tomography (OCT) in diabetic patients," Eur. J. Ophthalmol. 12, 482-487 (2002).
  7. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, J. A. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  8. A. G. Podoleanu, G. M. Dobre, D. A. Jackson, "En-face coherence imaging using galvanometer scanner modulation," Opt. Lett. 23, 147-149 (1998).
    [CrossRef]
  9. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12-20 (1998)
    [CrossRef] [PubMed]
  10. H.-W. Wang, A. M. Rollins, J. A. Izatt, "High speed, full field optical coherence microscopy," in Coherence domain optical methods in biomedical science and clinical applications III, V. V. Tuchin and J. A. Izatt, eds., Proc. SPIE 3598, 204-212 (1999).
    [CrossRef]
  11. R. H. Webb, G. W. Hughes, F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987)
    [CrossRef] [PubMed]
  12. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, "High-speed optical coherence domain reflectometry," Opt Lett 17, 151-153 (1992)
    [CrossRef] [PubMed]
  13. American national standard for safe use of lasers. ANSI Z 136.1 (Laser Institute of America, Orlando, 2000).
  14. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren Jr., D. H. Reitze, "In vivo OCT imaging of hard and soft tissue of the oral cavity," Opt. Express 3, 239-250 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-239">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-239<a/>.
    [CrossRef] [PubMed]
  15. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, "Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography," Radiology 208, 81-86 (1998).
    [PubMed]
  16. A.G. Podoleanu, J. A. Rogers, D. A. Jackson, S. Dunne, "Three dimensional OCT images from retina and skin," Opt. Express 7, 292-298 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-292">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-292</a>.
    [CrossRef] [PubMed]
  17. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, "An optical coherence microscope for 3-dimensional imaging in developmental biology," Opt. Express 6, 136-146 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-7-136">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-7-136</a>.
    [CrossRef] [PubMed]
  18. P. Massin, G. Duguid, A. Erginay, B. Haouchine, A. Gaudric, "Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy," Am. J. Ophthalmol. 135, 169-177 (2003)
    [CrossRef] [PubMed]
  19. C. Strøm, B. Sander, N. Larsen, M. Larsen, H. Lund-Andersen, "Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography," Invest. Ophthalmol. Vis. Sci. 43, 241-245 (2002).
    [PubMed]

Am. J. Ophthalmol.

P. Massin, G. Duguid, A. Erginay, B. Haouchine, A. Gaudric, "Optical coherence tomography for evaluating diabetic macular edema before and after vitrectomy," Am. J. Ophthalmol. 135, 169-177 (2003)
[CrossRef] [PubMed]

Appl. Opt.

Eur. J. Ophthalmol.

R. Lattanzio, R. Brancato, R. Pierro, F. Bandello, B. Iaccher, T. Fiore, G. Maestranzi, "Macular thickness measured by optical coherence tomography (OCT) in diabetic patients," Eur. J. Ophthalmol. 12, 482-487 (2002).

Invest. Ophthalmol. Vis. Sci.

C. Strøm, B. Sander, N. Larsen, M. Larsen, H. Lund-Andersen, "Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography," Invest. Ophthalmol. Vis. Sci. 43, 241-245 (2002).
[PubMed]

J. Biomed. Opt.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12-20 (1998)
[CrossRef] [PubMed]

W. Drexler, O. Findl, R. Menapace, A. Kruger, A. Wedrich, G. Rainer, A. Baumgartner, C. K. Hitzenberger, A. F. Fercher, "Dual beam optical coherence tomography: Signal identification for ophthalmologic diagnosis," J. Biomed. Opt. 3, 55-65 (1998).
[CrossRef] [PubMed]

Ophthalmology

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, J.G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

H.-W. Wang, A. M. Rollins, J. A. Izatt, "High speed, full field optical coherence microscopy," in Coherence domain optical methods in biomedical science and clinical applications III, V. V. Tuchin and J. A. Izatt, eds., Proc. SPIE 3598, 204-212 (1999).
[CrossRef]

Progr. Opt.

A. F. Fercher and C. K. Hitzenberger, "Optical Coherence Tomography," Progr. Opt. 44, 215-302 (2002).
[CrossRef]

Radiology

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, "Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography," Radiology 208, 81-86 (1998).
[PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991)
[CrossRef] [PubMed]

Other

B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).

American national standard for safe use of lasers. ANSI Z 136.1 (Laser Institute of America, Orlando, 2000).

Supplementary Material (3)

» Media 1: MOV (772 KB)     
» Media 2: MOV (1160 KB)     
» Media 3: MOV (716 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Basic sketch of operating principle of a combined CSLO-OCT instrument. PC…personal computer; ν…optical frequencies; Δν…frequency difference.

Fig.2.
Fig.2.

Comparison of conventional longitudinal scan pattern (left) and transversal scan pattern (right).

Fig. 3.
Fig. 3.

(1.16 MB) Frame no. 10 of movie showing the recording sequence of a 3D OCT data set in the fovea of a healthy volunteer. Image size: 10°×10°. Depth step size between individual movie frames: 16 µm. 45 transversal frames out of a total of 64 are shown (the first frames corresponding to positions entirely in the vitreous are omitted).

Fig. 4.
Fig. 4.

(717 kB) Frame no. 33 of movie showing software derived B-scans through the fovea of a healthy volunteer. Same data set as in fig. 2. The upper part of the figure shows an SLO-like projection image (10°(x)×10°(y)) of the foveal area, the lower part shows the B-scan corresponding to the actual movie frame (10°(y)×1.05 mm(z)). The red indicator line at the right hand side of the projection image indicates the y-position corresponding to the actual movie frame.

Fig. 5.
Fig. 5.

Retinal thickness map (distance ILM – RPE) of the macular area of a healthy human volunteer derived from 3D OCT data set. Image size: 15°×15°. Color bar: retinal thickness in µm.

Fig. 6.
Fig. 6.

(772 kB) Frame no. 35 of movie showing software derived B-scans through the optic nerve head of a healthy volunteer. The left part of the figure shows an SLO-like projection image (10°(x)×10°(y)) of the nerve head area, the right part shows the B-scan corresponding to the actual movie frame (10°(y)×1.05 mm(z)). The red indicator line at the bottom of the projection image indicates the x-position corresponding to the actual movie frame.

Fig. 7.
Fig. 7.

3D OCT data set of the optic nerve head of a healthy volunteer (same data set as in fig. 5). Bottom right: SLO-like projection image. Top: y-z (10°×1.05 mm), and bottom left: x-z (10°×1.05 mm), cross sectional B-scan images derived at indicated cursor positions from 3D data set by software.

Metrics