Abstract

Q-switching of a wavelength tunable Yb3+-doped double-clad fiber laser by a Tm3+-codoping in the gain fiber is demonstrated. This system showed up to 2.4 W output power, up to 140 kHz repetition rate, a maximum pulse energy of 21.8 µJ and a minimum pulse duration of 1.1 µs. Using a grating pair in Littrow-Littman configuration the emission wavelength was tunable between 1055 nm and 1090 nm. The output radiation showed a maximum spectral linewidth of 4 GHz.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez �?? Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,�?? Opt. Commun. 198, 141-146 (2002)
    [CrossRef]
  2. Z. Y. Chen, A. B. Grudinin, J. Porta, J. D. Minelly, �??Enhanced Q switching in double-clad fiber lasers,�?? Opt. Lett. 23, 454-456 (1998)
    [CrossRef]
  3. K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, �??Chromium Doped Y3Al5O12 Ceramics �?? a Novel Saturable Absorber for Passively Self-Q-switched One- Micron Solid State Lasers,�?? Jpn. J. Appl. Phys. 41, L96-L98 (2002)
    [CrossRef]
  4. L. Tordella, H. Dejellout, B. Dussardier, A. Saissy, G. Monnom, �??High repetition rate passively Q-switched Nd3+:Cr4+ all fibre laser,�?? Electron. Lett. 39, 1307 - 1308 (2003)
    [CrossRef]
  5. P. Gross, M. E. Klein, T. Walde, K.-J. Boller, M. Auerbach, P. Wessels, C. Fallnich, �??Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator,�?? Opt. Lett. 27, 418 �?? 420 (2002)
    [CrossRef]
  6. E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, �??Blue and infrared up- onversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117 and 1.18 µm,�?? Appl. Phys. Lett. 74, 1540 �?? 1554 (1999)
    [CrossRef]
  7. R. Caspary �??Applied Rare-Earth Spectroscopy for Fiber Laser Optimization,�?? Shaker, Aachen (2002)
  8. S. Colin, E. Contesse, P. Le Boudec, G. Stephan, F. Sanchez, �??Evidence of a saturable-absorption effect in heavily erbium-doped fibers,�?? Opt. Lett. 21, 1987 - 1989 (1996)
    [CrossRef] [PubMed]
  9. S. D. Jackson, T. A. King, �??Dynamics of the output of heavily Tm-doped double clad silica fiber lasers,�?? .J Opt. Soc. Am. B 16, 2178 �?? 2188 (1999)
    [CrossRef]
  10. M. V. D. Vermelho, U. Peschel, J. S. Aitchison, �??Simple and Accurate procedure for Modeling Erbium-doped Waveguide Amplifiers with High Concentrations,�?? J. Lightwave Technol. 18, 401 - 408 (2000)
    [CrossRef]
  11. Siegman, �??Lasers,�?? University Science Books, Sausalito (1986)
  12. R. Rangel-Rojo, M. Mohebi, �??Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,�?? Opt. Commun. 137, 98 �?? 102 (1997)
    [CrossRef]
  13. P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, �??Super- tretched mode-locked Yb3+-fiber ring laser with 40 nm bandwidth, 9.5 nJ pulse energy and 630 mW output power,�?? Opt. Commun. 211, 283 - 287 (2002)
    [CrossRef]
  14. M. Auerbach, P. Adel, D. Wandt, C. Fallnich, S. Unger, S. Jetschke, H. R. Mueller �?? 10 W widely tunable narrow linewidth double-clad fiber ring laser,�?? Opt. Express 10, 139-144 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-2-139">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-2-139</a>
    [CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. B. Mejia, A. N. Starodumov, Y. O. Barmenkov, �??Blue and infrared up- onversion in Tm3+-doped fluorozirconate fiber pumped at 1.06, 1.117 and 1.18 µm,�?? Appl. Phys. Lett. 74, 1540 �?? 1554 (1999)
[CrossRef]

Electron. Lett. (1)

L. Tordella, H. Dejellout, B. Dussardier, A. Saissy, G. Monnom, �??High repetition rate passively Q-switched Nd3+:Cr4+ all fibre laser,�?? Electron. Lett. 39, 1307 - 1308 (2003)
[CrossRef]

J Opt. Soc. Am. B (1)

S. D. Jackson, T. A. King, �??Dynamics of the output of heavily Tm-doped double clad silica fiber lasers,�?? .J Opt. Soc. Am. B 16, 2178 �?? 2188 (1999)
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, �??Chromium Doped Y3Al5O12 Ceramics �?? a Novel Saturable Absorber for Passively Self-Q-switched One- Micron Solid State Lasers,�?? Jpn. J. Appl. Phys. 41, L96-L98 (2002)
[CrossRef]

Opt. Commun. (3)

A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, F. Sanchez �?? Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,�?? Opt. Commun. 198, 141-146 (2002)
[CrossRef]

R. Rangel-Rojo, M. Mohebi, �??Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,�?? Opt. Commun. 137, 98 �?? 102 (1997)
[CrossRef]

P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, �??Super- tretched mode-locked Yb3+-fiber ring laser with 40 nm bandwidth, 9.5 nJ pulse energy and 630 mW output power,�?? Opt. Commun. 211, 283 - 287 (2002)
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

R. Caspary �??Applied Rare-Earth Spectroscopy for Fiber Laser Optimization,�?? Shaker, Aachen (2002)

Siegman, �??Lasers,�?? University Science Books, Sausalito (1986)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Set-up of the tunable Q-switched fiber laser system.

Fig. 2.
Fig. 2.

Output power, repetition rate, pulse width and pulse energy as a function of the pump power.

Fig 3.
Fig 3.

Left diagram: 500 MHz Oscilloscope trace (black) of a Q-switched pulse which shows the nssubstructure above the µs pulse pedestal. The red curve shows the averaged time signal (averaging time 5 ns). Right diagram: Typical “long-time” photodiode trace of the Q-switched fiber laser output signal.

Fig. 4.
Fig. 4.

Energy level diagram for Tm3+-ions (left). Pump transitions and fluorescence are indicated by vertical dashed arrows. Nonradiative decays which are relevant for the upconversion process (solid) or which are taken into account for the calculations (dashed) are indicated by diagonal arrows. For the pump transitions the wavelength of the absorption peaks are shown. Lifetimes which were determined by calculation of the nonradiative decay rates are in brackets (same relation between energy gap and nonradiative decay rate as in Er3+-silica fibers assumed [10]). Lifetime of the 1G4 level was determined from the exponential decay of the blue fluorescence. Right diagram shows the calculated Tm3+-absorption (upper curve) of the 32 m fiber. The lower curve shows the corresponding intra-cavity signal (20 µJ, 1.5 µs, 65 kHz).

Tables (1)

Tables Icon

Table 1. Laser data for set-ups with a 20 m and a 32 m long gain fiber

Metrics