Abstract

We describe what we believe to be the first wave-front measurements of the human eye at a sampling rate of 300 Hz with a custom Hartmann–Shack wave-front sensor that uses complementary metal-oxide semiconductor (CMOS) technology. This sensor has been developed to replace standard charge-coupled device (CCD) cameras and the slow software image processing that is normally used to reconstruct the wave front from the focal-plane image of a lenslet array. We describe the sensor’s principle of operation and introduce the performance with static wave fronts. The system has been used to measure human-eye wave-front aberrations with a bandwidth of 300 Hz, which is approximately an order of magnitude faster than with standard software-based solutions. Finally, we discuss the measured data and consider further improvements to the system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Hardy, �??Active optics: a new technology for the control of light,�?? Proc. IEEE 66, 651�??697 (1978).
    [CrossRef]
  2. J. Liang, B. Grimm, S. Goelz, and J. Bille, �??Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. 11, (1994).
  3. J. Liang, D.Williams, and D. T. Miller, �??Supernormal vision and high-resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A 14, 2884�??2892 (1997).
    [CrossRef]
  4. P. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, �??Analysis of the performance of the Hartmann-Shack sensor in the human eye,�?? J. Opt. Soc. Am. A 17, 1388�??1398 (2000).
    [CrossRef]
  5. H. Hofer, L. Chen, G. Yoon, B. Singer, Y. Yamauchi, and D. Williams, �??Improvement in retinal imaging quality with dynamic correction of the eye�??s aberrations,�?? Opt. Express 8, 631�??643 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631</a>.
    [CrossRef] [PubMed]
  6. E. Fernandez, I. Iglesias, and P. Artal, �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, (2001).
    [CrossRef]
  7. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty are preparing a manuscript to be called �??Benefit of higher closed-loop bandwidths in ocular adaptive optics,�?? Opt. Express 11, 2597�??2605 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597</a>.
    [CrossRef] [PubMed]
  8. D. Droste and J. Bille, �??An ASIC for Hartmann-Shack wavefront detection,�?? IEEE J. Solid-State Circuits 37, 173�??182 (2002).
    [CrossRef]
  9. D. de Lima Monteiro, CMOS-Based Integrated Wavefront Sensor (Delft University, Delft, The Netherlands, 2002).
  10. D. Malacara, Optical Shop Testing (Wiley, New York, 1992).
  11. H. Hofer, P. Artal, B. Singer, J. Aragon, and D. Williams, �??Dynamics of the eyes wave aberration,�?? J. Opt. Soc. Am. 18, 497�??506 (2001).
    [CrossRef]
  12. M. Tartagni and P. Perona, �??Computing centroids in current-mode technique,�?? Electron, Lett. 29, 1811�??1813 (1993).
    [CrossRef]
  13. J. Lazarro, S. Ryckebusch, M. Mahowald, and C. Mead, �??Winner-take-all networks of O(n) complexity,�?? in Advances in Neural Information Processing Systems (D. S. Touretzky, San Mateo, Calif., 1998), pp. 703�??711.
  14. T. Nirmaier, G. Pudasaini, and J. Bille, �??CMOS-based wavefront sensor for real-time adaptive optics,�?? in Proceedings of the 13th IEEE Real Time Conference (IEEE, New York, 2003).

Electron. Lett. (1)

M. Tartagni and P. Perona, �??Computing centroids in current-mode technique,�?? Electron, Lett. 29, 1811�??1813 (1993).
[CrossRef]

IEEE J. Solid-State Circuits (1)

D. Droste and J. Bille, �??An ASIC for Hartmann-Shack wavefront detection,�?? IEEE J. Solid-State Circuits 37, 173�??182 (2002).
[CrossRef]

IEEE Real Time Conference (1)

T. Nirmaier, G. Pudasaini, and J. Bille, �??CMOS-based wavefront sensor for real-time adaptive optics,�?? in Proceedings of the 13th IEEE Real Time Conference (IEEE, New York, 2003).

J. Opt. Soc. Am. (2)

J. Liang, B. Grimm, S. Goelz, and J. Bille, �??Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. 11, (1994).

H. Hofer, P. Artal, B. Singer, J. Aragon, and D. Williams, �??Dynamics of the eyes wave aberration,�?? J. Opt. Soc. Am. 18, 497�??506 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (2)

Opt. Lett. (1)

E. Fernandez, I. Iglesias, and P. Artal, �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, (2001).
[CrossRef]

Proc. IEEE (1)

J. Hardy, �??Active optics: a new technology for the control of light,�?? Proc. IEEE 66, 651�??697 (1978).
[CrossRef]

Other (3)

D. de Lima Monteiro, CMOS-Based Integrated Wavefront Sensor (Delft University, Delft, The Netherlands, 2002).

D. Malacara, Optical Shop Testing (Wiley, New York, 1992).

J. Lazarro, S. Ryckebusch, M. Mahowald, and C. Mead, �??Winner-take-all networks of O(n) complexity,�?? in Advances in Neural Information Processing Systems (D. S. Touretzky, San Mateo, Calif., 1998), pp. 703�??711.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Hartmann–Shack wave-front sensor with microlens array and image sensor in the focal plane (a) and exemplary spot pattern (b).

Fig. 2.
Fig. 2.

Architecture of the ASIC (a) and an individual focal-spot detector in the detector array (b).

Fig. 3.
Fig. 3.

Schematic of the resistive-ring network of WTA circuits, in which each neuron receives an input photocurrent from a photodiode row or column and establishes a binary output current.

Fig. 4.
Fig. 4.

Microphotograph of one corner of the sensor chip (a) and chip mounted on optic carrier (b).

Fig. 5.
Fig. 5.

Spot tracking with slow-moving (100-µm/s) (a) and fast-moving (10 mm/s) (b) focal spots.

Fig. 6.
Fig. 6.

Zernike-term standard deviation for a large and a small laser spot power.

Fig. 7.
Fig. 7.

Optical setup for wave-front measurements of the human eye (E), with laser diode (LD), beam splitter (BS), telescope (L1, L2, and PH), lenslet array (LA), and sensor (ASIC).

Fig. 8.
Fig. 8.

Measurement at the optical setup for wave-front measurements of the human eye with test subject

Fig. 9.
Fig. 9.

Time series of wave-front contour plots from a human-eye measurement with Δt=30 ms. The contour lines have 20-nm spacing.

Fig. 10.
Fig. 10.

Time series of defocus and coma magnitude (a) and wave-front rms error (b) measured at 300 Hz over 3 s.

Fig. 11.
Fig. 11.

Power spectral density of human eye’s defocus (a) and static defocus measurement (b) at lowest possible light power (~20 pW per spot). Also shown is the power spectral density of astigmatism (c) and third-order spherical aberration (d). Above a frequency of approximately 70 Hz no aberrations could be observed.

Tables (1)

Tables Icon

Table 1. Spot-position uncertainty with the simple WTA circuit [σ(max)] and the resistivering network σ(centroid) at different spot powers.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ W ( x , y ) x i , j , W ( x , y ) y i , j ] = ( Δ x i , j f , Δ y i , j f ) ,
( x ̂ , y ̂ ) = arg max i , j ( g ij )
( x ̂ , y ̂ ) = ( i j x ij g ij i j g ij , i j y ij g ij i j g ij ) .
I x , i = ( i , j ) M x , i g ij , I y , j = ( i , j ) M x , j g ij ,
( x ̂ , y ̂ ) = ( I R , x I L , x + I R , x , I R , y I L , y + I R , y )
I 0 = I src [ 0 , , 1 , , 0 ] ,
( x ̂ , y ̂ ) = ( x W , y W ) .
N i I src , n with n = i mod w .
I 0 = I src [ 0 , , 0 , 1 , , 1 , 0 , 0 ] ,
( x ̂ , y ̂ ) = [ med ( x W , k ) , med ( y W , k ) ] .

Metrics