Abstract

The phase coherence of supercontinuum generation in microstructure fiber is quantified by performing a Young’s type interference experiment between independently generated supercontinua from two separate fiber segments. Analysis of the resulting interferogram yields the wavelength dependence of the magnitude of the mutual degree of coherence, and a comparison of experimental results with numerical simulations suggests that the primary source of coherence degradation is the technical noise-induced fluctuations in the injected peak power.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  2. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 8720, 203901 (2001).
  3. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  4. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  5. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  6. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002).
    [CrossRef]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B 77, 269-277 (2003).
    [CrossRef]
  8. T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Long-term carrier-envelope phase coherence,�?? Opt. Lett. 27, 1436-1438 (2002).
    [CrossRef]
  9. M. Bellini and T. W. Hänsch, �??Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,�?? Opt. Lett. 25, 1049-1051 (2000).
    [CrossRef]
  10. P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, �??Phase-coherent generation of tunable visible femtosecond pulses,�?? Opt. Lett. 28, 185-187 (2003).
    [CrossRef] [PubMed]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  12. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, �??Coherence degradation in the process of supercontinuum generation in an optical fiber,�?? Opt. Fiber Technol. 4, 215-223 (1998).
    [CrossRef]
  13. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, art. no.-173901 (2002).
    [CrossRef] [PubMed]
  14. H. Kubota, K. R. Tamura, and M. Nakazawa, �??Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,�?? J. Opt. Soc. Am. B 16, 2223-2232 (1999).
    [CrossRef]
  15. P. D. Drummond and J. F. Corney, �??Quantum noise in optical fibers. I. Stochastic equations,�?? J. Opt. Soc. Am. B 18, 139-152 (2001).
    [CrossRef]

Appl. Phys. (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B 77, 269-277 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Fiber Technol. (1)

M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, �??Coherence degradation in the process of supercontinuum generation in an optical fiber,�?? Opt. Fiber Technol. 4, 215-223 (1998).
[CrossRef]

Opt. Lett. (8)

T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Long-term carrier-envelope phase coherence,�?? Opt. Lett. 27, 1436-1438 (2002).
[CrossRef]

M. Bellini and T. W. Hänsch, �??Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,�?? Opt. Lett. 25, 1049-1051 (2000).
[CrossRef]

P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, �??Phase-coherent generation of tunable visible femtosecond pulses,�?? Opt. Lett. 28, 185-187 (2003).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
[CrossRef]

A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002).
[CrossRef]

J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174-1176 (2002).
[CrossRef]

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, art. no.-173901 (2002).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 8720, 203901 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spectral interference of a generated SC with the Ti:Sapphire pump pulse. Shown in the plot are the spectra of: the microstructure-fiber SC (green line), the Ti:Sapphire output (blue line), and the interference spectrum of the two (black line). The inset shows an expanded section of the interference spectrum around 795 nm.

Fig. 2.
Fig. 2.

Schematic diagram of the Young’s double-slit-type setup. In the diagram: λ/2-wp, half-waveplates; MS 1 and MS 2, microstructure fiber segments.

Fig. 3.
Fig. 3.

Measured spatially resolved interferograms for (a) shorter- and (b) longerwavelength sections of the SC.

Fig. 4.
Fig. 4.

(a) Experimentally measured SC spectra from each fiber (bottom), the visibility extracted from the interferogram between the two SC (middle) and the corresponding calculated degree of coherence (top). (b) corresponding results from simulations. The visibility drops near the edge of the SC spectra, due to the poor signal-to-noise ratio. The injected pulse energies are 0.25 nJ and 0.58 nJ, for the two SC pulses respectively.

Metrics