Abstract

The photoluminescence spectra of the divalent Ge (Ge2+) center in GeO2-SiO2 glasses with different photosensitivities were investigated by means of excitation-emission energy mapping. The ultraviolet light induced photorefractivity has been correlated with the local structure around the Ge2+ centers. The glasses with a larger photorefractivity tended to exhibit a greater band broadening of the singlet-singlet transition on the higher excitation energy side accompanied by an increase in the Stokes shifts. This strongly suggests the existence of highly photosensitive Ge2+ centers with higher excitation energies. It is also found that the introduction of a hydroxyl group or boron species in GeO2-SiO2 glasses under appropriate conditions modifies the local environment of Ge2+ leading to an enhanced photorefractivity.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photosensitivity of gallium-doped silica core fiber to 193  nm ArF excimer laser

Dinusha S. Gunawardena, Khairul A. Mat-Sharif, Nizam Tamchek, Man-Hong Lai, Nasr Y. M. Omar, Siamak D. Emami, Shahrin Z. Muhamad-Yasin, Mohd I. Zulkifli, Zulfadzli Yusoff, Hairul. A. Abdul-Rashid, Kok-Sing Lim, and Harith Ahmad
Appl. Opt. 54(17) 5508-5512 (2015)

Photochemical reaction of hydrogen with germanosilicate glass initiated by 3.4–5.4-eV ultraviolet light

V. Grubsky, D. S. Starodubov, and J. Feinberg
Opt. Lett. 24(11) 729-731 (1999)

Mechanisms of Bragg grating formation in UV hypersensitized standard germanosilicate fibers with KrF laser light

Matthieu Lancry, Pierre Niay, Marc Douay, and Bertrand Poumellec
J. Opt. Soc. Am. B 23(8) 1556-1564 (2006)

References

  • View by:
  • |
  • |
  • |

  1. Andreas Orthonos and Kyriacos Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing, (Artech House, 1999) Chap. 2.
  2. T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in UV-poled glass,” Jpn J. Appl. Phys. Suppl. 37, 15–18 (1998).
  3. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
    [Crossref]
  4. M. Fokine and W. Margulis, “Large increase in photosensitivity through massive hydroxyl formation,” Opt. Lett. 25, 302 (2000).
    [Crossref]
  5. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
    [Crossref]
  6. M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
    [Crossref]
  7. M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko, and J. Nishii, “Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses,” Appl. Opt. 42, 4594–4598 (2003).
    [Crossref] [PubMed]
  8. K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
    [Crossref]
  9. T. E. Tsai, M. A. Saifi, E. J. Frieble, D. L. Griscom, and U. Ötenberg, “Correlation of defect centers with 2nd-harmonic generation in Ge-doped and Ge-P-doped silica-core single-mode fibers,” Opt. Lett. 14, 1023 (1989).
    [Crossref] [PubMed]
  10. J. Nishii, “Permanent index changes in Ge-SiO2 glasses by excimer laser irradiation,” Materials Sci. Eng. B 54, 1 (1998).
    [Crossref]
  11. M. Takahashiet al, “Photochemical reaction of Ge2+ in germanosilicate glasses under intense near-UV laser excitation,” J. Appl. Phys. 92, 3442 (2002).
    [Crossref]
  12. T. Uchino, M. Takahashi, and T. Yoko, “Structure and formation mechanism of Ge E’ center from divalent defects in Ge-doped SiO2 glass,” Phys. Rev. Lett. 84, 1475 (2000).
    [Crossref] [PubMed]
  13. T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
    [Crossref]
  14. R. Tohmonet al, “Triplet-state defect in high-purity silica glass,” Phys. Rev. B 41, 7258 (1992).
    [Crossref]
  15. M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
    [Crossref]
  16. N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
    [Crossref]
  17. A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
    [Crossref]

2003 (1)

2002 (2)

M. Takahashiet al, “Photochemical reaction of Ge2+ in germanosilicate glasses under intense near-UV laser excitation,” J. Appl. Phys. 92, 3442 (2002).
[Crossref]

T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
[Crossref]

2000 (3)

T. Uchino, M. Takahashi, and T. Yoko, “Structure and formation mechanism of Ge E’ center from divalent defects in Ge-doped SiO2 glass,” Phys. Rev. Lett. 84, 1475 (2000).
[Crossref] [PubMed]

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

M. Fokine and W. Margulis, “Large increase in photosensitivity through massive hydroxyl formation,” Opt. Lett. 25, 302 (2000).
[Crossref]

1998 (3)

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in UV-poled glass,” Jpn J. Appl. Phys. Suppl. 37, 15–18 (1998).

J. Nishii, “Permanent index changes in Ge-SiO2 glasses by excimer laser irradiation,” Materials Sci. Eng. B 54, 1 (1998).
[Crossref]

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

1997 (1)

A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
[Crossref]

1994 (1)

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

1993 (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
[Crossref]

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

1992 (1)

R. Tohmonet al, “Triplet-state defect in high-purity silica glass,” Phys. Rev. B 41, 7258 (1992).
[Crossref]

1989 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Ainslie, B. J.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

Anedda, A.

A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
[Crossref]

Armitage, J. R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
[Crossref]

Bjarklev, A.

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Campbell, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

Carbonaro, C. M.

A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
[Crossref]

Chiodini, N.

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

Corpino, R.

A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
[Crossref]

Fokine, M.

Frieble, E. J.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Fujiwara, T.

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in UV-poled glass,” Jpn J. Appl. Phys. Suppl. 37, 15–18 (1998).

Griscom, D. L.

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Ichii, K.

M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko, and J. Nishii, “Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses,” Appl. Opt. 42, 4594–4598 (2003).
[Crossref] [PubMed]

T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
[Crossref]

Ikushima, A. J.

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in UV-poled glass,” Jpn J. Appl. Phys. Suppl. 37, 15–18 (1998).

Johonson, D. C.

K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Kalli, Kyriacos

Andreas Orthonos and Kyriacos Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing, (Artech House, 1999) Chap. 2.

Kashyap, R.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
[Crossref]

Margulis, W.

Martini, M.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

Meinardi, F.

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
[Crossref]

Morazzoni, F.

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

Nishii, J.

Orthonos, Andreas

Andreas Orthonos and Kyriacos Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing, (Artech House, 1999) Chap. 2.

Ötenberg, U.

Paleari, A.

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

Poulsen, C.V.

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Poulsen, O.

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
[Crossref]

Saifi, M. A.

Sakoh, A.

Scotti, R.

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

Serpi, A.

A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
[Crossref]

Spinolo, G.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

Svalgraad, M.

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

Takahashi, M.

M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko, and J. Nishii, “Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses,” Appl. Opt. 42, 4594–4598 (2003).
[Crossref] [PubMed]

T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
[Crossref]

M. Takahashiet al, “Photochemical reaction of Ge2+ in germanosilicate glasses under intense near-UV laser excitation,” J. Appl. Phys. 92, 3442 (2002).
[Crossref]

T. Uchino, M. Takahashi, and T. Yoko, “Structure and formation mechanism of Ge E’ center from divalent defects in Ge-doped SiO2 glass,” Phys. Rev. Lett. 84, 1475 (2000).
[Crossref] [PubMed]

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in UV-poled glass,” Jpn J. Appl. Phys. Suppl. 37, 15–18 (1998).

Tohmon, R.

R. Tohmonet al, “Triplet-state defect in high-purity silica glass,” Phys. Rev. B 41, 7258 (1992).
[Crossref]

Tokuda, Y.

Tsai, T. E.

Uchino, T.

T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
[Crossref]

T. Uchino, M. Takahashi, and T. Yoko, “Structure and formation mechanism of Ge E’ center from divalent defects in Ge-doped SiO2 glass,” Phys. Rev. Lett. 84, 1475 (2000).
[Crossref] [PubMed]

Vedda, A.

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

Williams, D. L.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

Yoko, T.

M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko, and J. Nishii, “Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses,” Appl. Opt. 42, 4594–4598 (2003).
[Crossref] [PubMed]

T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
[Crossref]

T. Uchino, M. Takahashi, and T. Yoko, “Structure and formation mechanism of Ge E’ center from divalent defects in Ge-doped SiO2 glass,” Phys. Rev. Lett. 84, 1475 (2000).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johonson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Ultraviolet photoluminescence of porous silica,” Appl. Phys. Lett. 76, 3209 (2000).
[Crossref]

Electron. Lett. (3)

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced uv photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29, 45 (1993).
[Crossref]

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O. Poulsen, “Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,” Electron. Lett. 30, 1401–1403 (1994).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett. 29, 1191 (1993).
[Crossref]

J. Appl. Phys. (1)

M. Takahashiet al, “Photochemical reaction of Ge2+ in germanosilicate glasses under intense near-UV laser excitation,” J. Appl. Phys. 92, 3442 (2002).
[Crossref]

J. Non-Cryst. Solids (1)

A. Anedda, C. M. Carbonaro, R. Corpino, and A. Serpi, “Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,” J. Non-Cryst. Solids 216, 19 (1997).
[Crossref]

Jpn J. Appl. Phys. Suppl. (1)

T. Fujiwara, M. Takahashi, and A. J. Ikushima, “Second-harmonic generation in UV-poled glass,” Jpn J. Appl. Phys. Suppl. 37, 15–18 (1998).

Materials Sci. Eng. B (1)

J. Nishii, “Permanent index changes in Ge-SiO2 glasses by excimer laser irradiation,” Materials Sci. Eng. B 54, 1 (1998).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (3)

T. Uchino, M. Takahashi, K. Ichii, and T. Yoko, “Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,” Phys. Rev. B 65, 172202 (2002).
[Crossref]

R. Tohmonet al, “Triplet-state defect in high-purity silica glass,” Phys. Rev. B 41, 7258 (1992).
[Crossref]

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, “SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,” Phys. Rev. B 57, 3718 (1998).
[Crossref]

Phys. Rev. Lett. (1)

T. Uchino, M. Takahashi, and T. Yoko, “Structure and formation mechanism of Ge E’ center from divalent defects in Ge-doped SiO2 glass,” Phys. Rev. Lett. 84, 1475 (2000).
[Crossref] [PubMed]

Other (1)

Andreas Orthonos and Kyriacos Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing, (Artech House, 1999) Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

A bird’s-eye view of the PL spectrum mapping of the as-deposited GeO2-SiO2 CVD film. The intensity axis is shown on a logarithmic scale.

Fig. 2.
Fig. 2.

A schematic energy diagram of the Ge2+ center.

Fig. 3.
Fig. 3.

PL contour plots of GeO2-SiO2 CVD films: (a) as-deposited (sample A) and (b) heated (sample B). The maximum of the intensity axis is scaled to the maximum value in the α band.

Fig. 4.
Fig. 4.

Optical absorption spectra of samples used in this experiment. Samples (A)~(C) are shown in (a), and samples (D) and (E) are shown in (b).

Fig. 5.
Fig. 5.

PL contour plots of fiber preforms: (a) pristine (sample D), (b) OH-flooded (sample E).

Fig. 6.
Fig. 6.

Difference absorption spectra of the as-deposited CVD film as a function of heating time. The as-deposited CVD film was heated at 600 °C for 0, 1, 2, 5, 10, 20, 30, 40, 80, 100, 120, 150, 180, 240 and 300 s.

Fig. 7.
Fig. 7.

Schematic potential energy diagrams of the Ge2+ center in the case of (a) lower energy excitation and (b) higher energy excitation.

Fig. 8.
Fig. 8.

Optical absorption spectra of the as-deposited CVD film (a) and the OH-flooded fiber preform (b).

Fig. 9.
Fig. 9.

Model of UV-induced structure change in GeO2-SiO2 glass.

Fig. 10.
Fig. 10.

PL contour plots of the GeO2-B2O3-SiO2 CVD film (sample C).

Fig. 11.
Fig. 11.

An optical absorption spectrum of GeO2-SiO2 CVD film with three fitted curves assigned to the Ge2+, Ge(2) and GeE’ centers.

Tables (1)

Tables Icon

Table 1. Properties of the samples used for the experiments

Metrics