Abstract

The photoluminescence spectra of the divalent Ge (Ge2+) center in GeO2-SiO2 glasses with different photosensitivities were investigated by means of excitation-emission energy mapping. The ultraviolet light induced photorefractivity has been correlated with the local structure around the Ge2+ centers. The glasses with a larger photorefractivity tended to exhibit a greater band broadening of the singlet-singlet transition on the higher excitation energy side accompanied by an increase in the Stokes shifts. This strongly suggests the existence of highly photosensitive Ge2+ centers with higher excitation energies. It is also found that the introduction of a hydroxyl group or boron species in GeO2-SiO2 glasses under appropriate conditions modifies the local environment of Ge2+ leading to an enhanced photorefractivity.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Andreas Orthonos and Kyriacos Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing, (Artech House, 1999) Chap. 2.
  2. T. Fujiwara, M. Takahashi and A. J. Ikushima, "Second-harmonic generation in UV-poled glass," Jpn J. Appl. Phys. Suppl. 37, 15-18 (1998).
  3. P. J. Lemaire, R. M. Atkins, V. Mizrahi and W. A. Reed, �??High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,�?? Electron. Lett. 29, 1191 (1993)
    [CrossRef]
  4. M. Fokine and W. Margulis, �??Large increase in photosensitivity through massive hydroxyl formation,�?? Opt. Lett. 25, 302 (2000)
    [CrossRef]
  5. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap and R. Campbell, �??Enhanced uv photosensitivity in boron codoped germanosilicate fibers,�?? Electron. Lett. 29, 45 (1993)
    [CrossRef]
  6. M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O.Poulsen, �??Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,�?? Electron. Lett. 30, 1401-1403 (1994)
    [CrossRef]
  7. M. Takahashi, A. Sakoh, K. Ichii, Y. Tokuda, T. Yoko and J. Nishii, �??Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses,�?? Appl. Opt. 42, 4594-98 (2003)
    [CrossRef] [PubMed]
  8. K. O. Hill, Y. Fujii, D. C. Johonson and B. S. Kawasaki, �??Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,�?? Appl. Phys. Lett. 32, 647 (1978)
    [CrossRef]
  9. T. E. Tsai, M. A. Saifi, E. J. Frieble, D. L. Griscom and U. �?tenberg, �??Correlation of defect centers with 2nd-harmonic generation in Ge-doped and Ge-P-doped silica-core single-mode fibers,�?? Opt. Lett. 14, 1023 (1989)
    [CrossRef] [PubMed]
  10. J. Nishii, �??Permanent index changes in Ge-SiO2 glasses by excimer laser irradiation,�?? Materials Sci. Eng. B 54, 1 (1998)
    [CrossRef]
  11. M. Takahashi et al, �??Photochemical reaction of Ge2+ in germanosilicate glasses under intense near-UV laser excitation,�?? J. Appl. Phys. 92, 3442 (2002)
    [CrossRef]
  12. T. Uchino, M. Takahashi and T. Yoko, �??Structure and formation mechanism of Ge E�?? center from divalent defects in Ge-doped SiO2 glass,�?? Phys. Rev. Lett. 84, 1475 (2000)
    [CrossRef] [PubMed]
  13. T. Uchino, M. Takahashi, K. Ichii and T. Yoko, �??Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,�?? Phys. Rev. B 65, 172202 (2002)
    [CrossRef]
  14. R. Tohmon et al, �??Triplet-state defect in high-purity silica glass,�?? Phys. Rev. B 41, 7258 (1992)
    [CrossRef]
  15. M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, �??SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,�?? Phys. Rev. B 57, 3718 (1998)
    [CrossRef]
  16. N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari and R. Scotti, �??Ultraviolet photoluminescence of porous silica,�?? Appl. Phys. Lett. 76, 3209 (2000)
    [CrossRef]
  17. A. Anedda, C. M. Carbonaro, R. Corpino and A. Serpi, �??Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,�?? J. Non-Cryst. Solids 216, 19 (1997)
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari and R. Scotti, �??Ultraviolet photoluminescence of porous silica,�?? Appl. Phys. Lett. 76, 3209 (2000)
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johonson and B. S. Kawasaki, �??Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,�?? Appl. Phys. Lett. 32, 647 (1978)
[CrossRef]

Electron. Lett. (3)

P. J. Lemaire, R. M. Atkins, V. Mizrahi and W. A. Reed, �??High-pressure H2 loading as a technique for achieving ultrahigh uv photosensitivity and thermal sensitivity in GeO2 doped optical fibers,�?? Electron. Lett. 29, 1191 (1993)
[CrossRef]

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap and R. Campbell, �??Enhanced uv photosensitivity in boron codoped germanosilicate fibers,�?? Electron. Lett. 29, 45 (1993)
[CrossRef]

M. Svalgraad, C.V. Poulsen, A. Bjarklev, and O.Poulsen, �??Direct uv writing of buried singlemode channel wave-guides in Ge-doped silica films,�?? Electron. Lett. 30, 1401-1403 (1994)
[CrossRef]

J. Appl. Phys. (1)

M. Takahashi et al, �??Photochemical reaction of Ge2+ in germanosilicate glasses under intense near-UV laser excitation,�?? J. Appl. Phys. 92, 3442 (2002)
[CrossRef]

J. Non-Cryst. Solids (1)

A. Anedda, C. M. Carbonaro, R. Corpino and A. Serpi, �??Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica,�?? J. Non-Cryst. Solids 216, 19 (1997)
[CrossRef]

Jpn J. Appl. Phys. Suppl. (1)

T. Fujiwara, M. Takahashi and A. J. Ikushima, "Second-harmonic generation in UV-poled glass," Jpn J. Appl. Phys. Suppl. 37, 15-18 (1998).

Materials Sci. Eng. B (1)

J. Nishii, �??Permanent index changes in Ge-SiO2 glasses by excimer laser irradiation,�?? Materials Sci. Eng. B 54, 1 (1998)
[CrossRef]

Opt. Lett. (2)

Phys. Rev B (1)

R. Tohmon et al, �??Triplet-state defect in high-purity silica glass,�?? Phys. Rev. B 41, 7258 (1992)
[CrossRef]

Phys. Rev. B (2)

M. Martini, F. Meinardi, A. Paleari, G. Spinolo, and A. Vedda, �??SiO2:Ge photoluminescence: Detailed mapping of the excitation-emission UV pattern,�?? Phys. Rev. B 57, 3718 (1998)
[CrossRef]

T. Uchino, M. Takahashi, K. Ichii and T. Yoko, �??Microscopic model of photoinduced and pressure-induced UV spectral changes in germanosilicate glass,�?? Phys. Rev. B 65, 172202 (2002)
[CrossRef]

Phys. Rev. Lett. (1)

T. Uchino, M. Takahashi and T. Yoko, �??Structure and formation mechanism of Ge E�?? center from divalent defects in Ge-doped SiO2 glass,�?? Phys. Rev. Lett. 84, 1475 (2000)
[CrossRef] [PubMed]

Other (1)

Andreas Orthonos and Kyriacos Kalli, Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing, (Artech House, 1999) Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

A bird’s-eye view of the PL spectrum mapping of the as-deposited GeO2-SiO2 CVD film. The intensity axis is shown on a logarithmic scale.

Fig. 2.
Fig. 2.

A schematic energy diagram of the Ge2+ center.

Fig. 3.
Fig. 3.

PL contour plots of GeO2-SiO2 CVD films: (a) as-deposited (sample A) and (b) heated (sample B). The maximum of the intensity axis is scaled to the maximum value in the α band.

Fig. 4.
Fig. 4.

Optical absorption spectra of samples used in this experiment. Samples (A)~(C) are shown in (a), and samples (D) and (E) are shown in (b).

Fig. 5.
Fig. 5.

PL contour plots of fiber preforms: (a) pristine (sample D), (b) OH-flooded (sample E).

Fig. 6.
Fig. 6.

Difference absorption spectra of the as-deposited CVD film as a function of heating time. The as-deposited CVD film was heated at 600 °C for 0, 1, 2, 5, 10, 20, 30, 40, 80, 100, 120, 150, 180, 240 and 300 s.

Fig. 7.
Fig. 7.

Schematic potential energy diagrams of the Ge2+ center in the case of (a) lower energy excitation and (b) higher energy excitation.

Fig. 8.
Fig. 8.

Optical absorption spectra of the as-deposited CVD film (a) and the OH-flooded fiber preform (b).

Fig. 9.
Fig. 9.

Model of UV-induced structure change in GeO2-SiO2 glass.

Fig. 10.
Fig. 10.

PL contour plots of the GeO2-B2O3-SiO2 CVD film (sample C).

Fig. 11.
Fig. 11.

An optical absorption spectrum of GeO2-SiO2 CVD film with three fitted curves assigned to the Ge2+, Ge(2) and GeE’ centers.

Tables (1)

Tables Icon

Table 1. Properties of the samples used for the experiments

Metrics