Abstract

Absorption and emission properties between 350nm and 1600nm of the Tm2+ ions in optical fibers were investigated using the Tm2+-Tm3+ co-doped germanosilicate glass fibers and its fiber preform. Strong broad absorption band due to Tm2+ ions was found to appear from 350nm to ~900nm together with the absorption bands due to Tm3+ ions. Broad emission from ~600nm to ~1050nm and the other emission from ~1050nm to ~1300nm, which were not shown in the Tm3+ ions, were found upon the Ar ion laser pumping at 515nm. Both absorption and emission results confirm that the Tm2+ ions in the germanosilicate glass have the 4f-5d energy band from 350nm to ~900nm and the 4f-4f energy level at ~1115nm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, �??Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,�?? Opt. Fiber Technol. 3, 44-64 (1997).
    [CrossRef]
  2. M. Janos, J. Canning and M.G. Sceats, �??Transient transmission notches induced in Er3+ doped optical fibre bragg gratings,�?? Electron. Lett. 32, 245-246 (1996).
    [CrossRef]
  3. R.H Pantell and M.J.F. Digonnet, �??A model of nonlinear all-optical switching in doped fibers,�?? J. Lightwave Technol. 12, 149-156 (1993).
    [CrossRef]
  4. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, �??Experimental and theoretical analysis of the resonant nonlinearity in ytterbium-doped fiber,�?? J. Lightwave Technol. 16, 798-806 (1998).
    [CrossRef]
  5. D.-H. Cho, K. Hirao, N. Soga, and M. Nogami, �??Photochemical hole burning in Sm2+-doped aluminosilicate and borosilicate glasses,�?? J. Non-Cryst. Solids 215, 192-200 (1997).
    [CrossRef]
  6. J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, �??Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,�?? J. Non-Cryst. Solids 244, 185-188 (1999).
    [CrossRef]
  7. K. Oh, U.-C. Paek, T. F. Morse, and L. Reinhart, �??Photoinduced refractive-index change in Sm2+/Sm3+ codoped aluminosilicate fiber by irradiation of an Ar-ion laser,�?? Opt. Lett. 22, 1192-1194 (1997).
    [CrossRef] [PubMed]
  8. K. Oh, T. F. Morse, L. Reinhart, A. Kilian, and W. M. Risen Jr., �??Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,�?? J. Non-Cryst. Solids 149, 229-242 (1992).
    [CrossRef]
  9. Z. J. Kiss, �??Energy levels of divalent thulium in CaF2,�?? Phys. Rev. 127, 718-724 (1962).
    [CrossRef]
  10. F. A. Cotton and G. Wilkinson, Advanced inorganic chemistry (John Wiley & Sons, New York, 1988), Chap. 20.
  11. Y. Kim, Y. Chung, U. Paek, W. Han, �??Fabrication of Tm2+/Tm3+ co-doped silica fiber and its fluorescence characteristics,�?? in Optical Fiber Communication Conference, Tech. Dig., Postconference ed., Vol. 86 of OSA Trends in Optics and Photonics (TOPS) (Optical Society of America, Washington, D.C., 2003), pp. 301-302.
  12. G.H. Dieke and H.M. Crosswhite, �??The spectra of the doubly and triply ionized rare earths,�?? Appl. Opt. 2, 675-686 (1963).
    [CrossRef]
  13. E. Loh, �??4fn �?? 4fn-15d spectra of rare-earth ions in crystals,�?? Phys. Rev. 175, 533-536 (1968).
    [CrossRef]
  14. J. E. Townsend, S. B. Poole, and D. N. Payne, �??Solution-doping technique for fabrication of rare-earthdoped optical fibres,�?? Electron. Lett. 23, 329-331 (1987).
    [CrossRef]
  15. P.C Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology (Academic, New York, 1999), Chap. 2.
  16. A. Paul, Chemistry of glasses (Chapman & Hall, New York, 1990), Chap. 9.
  17. M.J. Weber, �??Lanthanide and actinide lasers,�?? in Lanthanide and actinide chemistry and spectroscopy, N.M. Edelstein, ed. (American Chemical Society, Washington, D.C., 1980).

Appl. Opt. (1)

Electron. Lett. (2)

M. Janos, J. Canning and M.G. Sceats, �??Transient transmission notches induced in Er3+ doped optical fibre bragg gratings,�?? Electron. Lett. 32, 245-246 (1996).
[CrossRef]

J. E. Townsend, S. B. Poole, and D. N. Payne, �??Solution-doping technique for fabrication of rare-earthdoped optical fibres,�?? Electron. Lett. 23, 329-331 (1987).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (3)

D.-H. Cho, K. Hirao, N. Soga, and M. Nogami, �??Photochemical hole burning in Sm2+-doped aluminosilicate and borosilicate glasses,�?? J. Non-Cryst. Solids 215, 192-200 (1997).
[CrossRef]

J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, and K. Hirao, �??Blue emission induced in Eu2+-doped glasses by an infrared femtosecond laser,�?? J. Non-Cryst. Solids 244, 185-188 (1999).
[CrossRef]

K. Oh, T. F. Morse, L. Reinhart, A. Kilian, and W. M. Risen Jr., �??Spectroscopic analysis of a Eu-doped aluminosilicate optical fiber preform,�?? J. Non-Cryst. Solids 149, 229-242 (1992).
[CrossRef]

Opt. Fiber Technol. (1)

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, �??Resonantly enhanced nonlinearity in doped fibers for low-power all-optical switching: a review,�?? Opt. Fiber Technol. 3, 44-64 (1997).
[CrossRef]

Opt. Lett. (1)

OSA TOPS Series (1)

Y. Kim, Y. Chung, U. Paek, W. Han, �??Fabrication of Tm2+/Tm3+ co-doped silica fiber and its fluorescence characteristics,�?? in Optical Fiber Communication Conference, Tech. Dig., Postconference ed., Vol. 86 of OSA Trends in Optics and Photonics (TOPS) (Optical Society of America, Washington, D.C., 2003), pp. 301-302.

Phys. Rev. (2)

E. Loh, �??4fn �?? 4fn-15d spectra of rare-earth ions in crystals,�?? Phys. Rev. 175, 533-536 (1968).
[CrossRef]

Z. J. Kiss, �??Energy levels of divalent thulium in CaF2,�?? Phys. Rev. 127, 718-724 (1962).
[CrossRef]

Other (4)

F. A. Cotton and G. Wilkinson, Advanced inorganic chemistry (John Wiley & Sons, New York, 1988), Chap. 20.

P.C Becker, N.A. Olsson, and J.R. Simpson, Erbium-doped fiber amplifiers: fundamentals and technology (Academic, New York, 1999), Chap. 2.

A. Paul, Chemistry of glasses (Chapman & Hall, New York, 1990), Chap. 9.

M.J. Weber, �??Lanthanide and actinide lasers,�?? in Lanthanide and actinide chemistry and spectroscopy, N.M. Edelstein, ed. (American Chemical Society, Washington, D.C., 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The optical absorption spectra of the Tm2+-Tm3+ co-doped germanosilicate glass optical fibers soaked with TmCl3 and sucrose solution, the Tm3+-Al3+ co-doped germanosilicate glass optical fibers soaked with TmCl3 and AlCl3 solution, and the germanosilicate glass fiber soaked with only sucrose solution.

Fig. 2.
Fig. 2.

Emission spectra with the launched pump powers from 7.8mW to 52mW at 515nm (a) 57cm long Tm3+-Al3+ co-doped germanosilicate glass fiber and (b) 46cm long Tm2+-Tm3+ co-doped germanosilicate glass fiber.

Fig. 3.
Fig. 3.

Emission spectra with the launched pump powers at 515nm (a) 187cm long Tm2+-Tm3+ co-doped germanosilicate glass fiber and (b) 258cm long Tm2+-Tm3+ co-doped germanosilicate glass fiber.

Fig. 4.
Fig. 4.

(a) Emission spectra between 800nm and 1300nm of the thulium doped fiber preforms upon the 7W Ar ion laser pumping together at 458nm, 476nm, 488nm, 497nm and 515nm (b) Normalized emission spectra of the spectra shown in (a).

Fig. 5.
Fig. 5.

The energy level diagram of the Tm2+ ions in (a) germanosilicate glass and (b) CaF2 crystals [9].

Metrics