Abstract

Optical-thermal and thermal-optical properties of a PdOx mask layer in a system with a superresolution near-field structure are investigated with a Z-scan technique and a heating experiment. The high photothermal stability of the PdOx mask is shown, and the reversible limit of the PdOx mask layer and a weak switch effect are revealed. The PdOx decomposition, which results in a bubble with Pd particles, is confirmed, and the laser-induced physical and chemical mechanisms in the PdOx mask layer are clarified and discussed. Our microscopic studies and heating analysis are consistent with the Z-scan results. The PdOx mask sample is also compared briefly with a PtO2 mask layer that has the same structure.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett. 73, 2078-2080 (1998).
    [CrossRef]
  2. E. Betzig, J. Trautman, and R. wolfe, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 141-143 (1992).
    [CrossRef]
  3. H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, "A near-field recording and readout technology using a metallic probe in an optical disk," Jpn. J. Appl Phys. 39, 980-981 (2000).
    [CrossRef]
  4. T. Fukaya, D. Buchel, S. Shinbori, J. Taming, N. Atoda, D. P. Tsai, and W. C. Lin, "Micro-optical nonlinearity of a silver oxide layer," J. Appl. Phys. 89, 6139-6145 (2001).
    [CrossRef]
  5. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
    [CrossRef]
  6. D. P. Tsai, andW. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett. 77, 1413-1415 (2000).
    [CrossRef]
  7. Q. Chen, J. Tominaga, L. Men, T. Fukaya, N. Atoda, and H. Fuji, "Superresolution optical disk with a thermoreversible organic thin film," Opt. Lett. 26, 274-276 (2001).
    [CrossRef]
  8. J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl. Phys. Lett. 78, 2417-2419 (2001).
    [CrossRef]
  9. D. Buechel, C. Mihalcea, T. Fukaya, N. Atoda, J. Tominaga, T. Kikukawa, and H. Fuji, "Sputtered silver oxide layer for surface-enhenced Raman spectroscopy," Appl. Phys. Lett. 79, 620-622 (2001).
    [CrossRef]
  10. T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, "Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer," Appl. Phys. Lett. 81, 4697-4699 (2002).
    [CrossRef]
  11. J. H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, and J. Tominaga, International Super-RENS and Plasmon Science & Technology Symposium 2003 (Tsukuba, Japan, 2003), pp. 67-68.
  12. T. Fukaya, J. Tominaga, T. Nakano, and N. Atoda, "Optical switching property of a light-induced pinhole in antimony thin film," Appl. Phys. Lett. 75, 3114-3116 (1999).
    [CrossRef]
  13. F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, "Norlinear optical absorption in the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 40, 4101-4102 (2001).
    [CrossRef]
  14. Q. Liu, T. Fukaya, J. Tominaga, M. Kuwahara, T. Shima, and J. H. Kim, "Nonlinear features and response mechanisms of a PtO2 mask layer for optical data storage with superresolution near-field structure," Opt. Lett. 28, No 19 (2003).
    [PubMed]
  15. M. Sheik-Bahae, A. A. Said, and E.W. Van Stryland, "High-sensitivity, single-beam n2measurements," Opt. Lett. 14, 955-957 (1989).
    [CrossRef] [PubMed]

Appl. Phys. Lett.

J. Tominaga, C. Mihalcea, D. Buechel, H. Fukuda, T. Nakano, N. Atoda, H. Fuji, and T. Kikukawa, "Local plasmon photonic transistor," Appl. Phys. Lett. 78, 2417-2419 (2001).
[CrossRef]

D. Buechel, C. Mihalcea, T. Fukaya, N. Atoda, J. Tominaga, T. Kikukawa, and H. Fuji, "Sputtered silver oxide layer for surface-enhenced Raman spectroscopy," Appl. Phys. Lett. 79, 620-622 (2001).
[CrossRef]

T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, "Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer," Appl. Phys. Lett. 81, 4697-4699 (2002).
[CrossRef]

T. Fukaya, J. Tominaga, T. Nakano, and N. Atoda, "Optical switching property of a light-induced pinhole in antimony thin film," Appl. Phys. Lett. 75, 3114-3116 (1999).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett. 73, 2078-2080 (1998).
[CrossRef]

E. Betzig, J. Trautman, and R. wolfe, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 141-143 (1992).
[CrossRef]

D. P. Tsai, andW. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett. 77, 1413-1415 (2000).
[CrossRef]

J. Appl. Phys.

T. Fukaya, D. Buchel, S. Shinbori, J. Taming, N. Atoda, D. P. Tsai, and W. C. Lin, "Micro-optical nonlinearity of a silver oxide layer," J. Appl. Phys. 89, 6139-6145 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, "A near-field recording and readout technology using a metallic probe in an optical disk," Jpn. J. Appl Phys. 39, 980-981 (2000).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, "Norlinear optical absorption in the AgOx-type super-resolution near-field structure," Jpn. J. Appl. Phys. 40, 4101-4102 (2001).
[CrossRef]

Opt. Lett.

Other

J. H. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, and J. Tominaga, International Super-RENS and Plasmon Science & Technology Symposium 2003 (Tsukuba, Japan, 2003), pp. 67-68.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic configuration of the Z-scan microscopic measurement of transmittance and reflectance. A, aperture; SP, beam splitter prism; OL1, objective lens with 40× magnification and 0.40 numerical aperture; OL2, objective lens with 20× magnification and 0.35 numerical aperture; L, lens; VA, variable attenuator; PT, photodetector.

Fig. 2.
Fig. 2.

Typical scanning examples of transmittance T and reflectance R for PdO x mask sample.

Fig. 3.
Fig. 3.

Normalized reflectance ℜ and transmittance Γ versus input power.

Fig. 4.
Fig. 4.

Optical switch effect of the PdO x mask.

Fig. 5.
Fig. 5.

Microscopic photos for scanned spots in the Z-scan measurement.

Fig. 6.
Fig. 6.

Thermal-optical features of the PdO x mask sample.

Fig. 7.
Fig. 7.

Irreversible features in the PdO x mask sample.

Metrics