Abstract

We report the fabrication of a Tellurite photonic crystal fiber, and demonstrate its waveguiding properties. The measured minimum loss is 2.3 dB/m at a wavelength of 1055 nm. The fiber supports several modes, but in practice just the fundamental mode can be used. We have observed strong stimulated Raman scattering in a fiber with an effective area Aeff=21.2µm2, using sub-ns, ~1 µJ pump pulses at 1064 nm.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extrusion of complex preforms for microstructured optical fibers

Heike Ebendorff-Heidepriem and Tanya M. Monro
Opt. Express 15(23) 15086-15092 (2007)

Infrared fibers

Guangming Tao, Heike Ebendorff-Heidepriem, Alexander M. Stolyarov, Sylvain Danto, John V. Badding, Yoel Fink, John Ballato, and Ayman F. Abouraddy
Adv. Opt. Photon. 7(2) 379-458 (2015)

Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation

V. V. Ravi Kanth Kumar, A. K George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F.G. Omenetto, and A. J Taylor
Opt. Express 10(25) 1520-1525 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic Crystal fibres,” Nature 424, 847–851 (2003).
    [Crossref] [PubMed]
  2. Philip St. J. Russell, “Photonic crystal fibers,” Science 299 (358–362) 2003
    [Crossref] [PubMed]
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode photonic crystal fiber,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  4. T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
    [Crossref]
  5. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
    [Crossref]
  6. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P.St.J. Russell, F.G Omenetto, and A. J. Taylor “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520.
    [Crossref] [PubMed]
  7. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mat. 3, 187–203 (1994).
    [Crossref]
  8. E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of tellurite fibers with zero dispersion near 1550 nm,” Proc. 28th European Conference on Optical Communications, Paper 3.2.3, Copenhagen (2002)
  9. R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
    [Crossref]
  10. R. A. H. El-Mallawany, Tellurite glasses handbook physical properties and data (CRC Press, 2002), Chap. 10.
  11. G. P. Agrawal, Nonlinear Fiber optics (Academic Press), Chap. 2.
  12. L. L. Chase and E. W. V. Stryland, “Nonlinear optical properties” in Handbook of laser science and technology supplement 2: optical materials, M. J. Weber, ed. (CRC Press), Section 8.

2003 (3)

J. C. Knight, “Photonic Crystal fibres,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

Philip St. J. Russell, “Photonic crystal fibers,” Science 299 (358–362) 2003
[Crossref] [PubMed]

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

2002 (2)

2000 (1)

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

1996 (1)

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mat. 3, 187–203 (1994).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber optics (Academic Press), Chap. 2.

Atkin, D. M.

Birks, T. A.

Broderick, N. G. R.

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Cardinal, T.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Chase, L. L.

L. L. Chase and E. W. V. Stryland, “Nonlinear optical properties” in Handbook of laser science and technology supplement 2: optical materials, M. J. Weber, ed. (CRC Press), Section 8.

Delfyett, P.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

El-Mallawany, R. A. H.

R. A. H. El-Mallawany, Tellurite glasses handbook physical properties and data (CRC Press, 2002), Chap. 10.

Frampton, K.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

George, A. K.

Guo, Y.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Hewak, D. W.

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Hewak, D.W.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Hsueh, Y.-L.

E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of tellurite fibers with zero dispersion near 1550 nm,” Proc. 28th European Conference on Optical Communications, Paper 3.2.3, Copenhagen (2002)

Hu, E. S.

E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of tellurite fibers with zero dispersion near 1550 nm,” Proc. 28th European Conference on Optical Communications, Paper 3.2.3, Copenhagen (2002)

Jankovic, L.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Kazovsky, L. G.

E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of tellurite fibers with zero dispersion near 1550 nm,” Proc. 28th European Conference on Optical Communications, Paper 3.2.3, Copenhagen (2002)

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Kim, H.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Knight, J. C.

Kumar, V. V. Ravi Kanth

Marhic, M. E.

E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of tellurite fibers with zero dispersion near 1550 nm,” Proc. 28th European Conference on Optical Communications, Paper 3.2.3, Copenhagen (2002)

Monro, T. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Monro, T.M.

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Moore, R.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Omenetto, F.G

Reeves, W. H.

Richardson, D. J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Richardson, D.J

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Richardson, K.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Rivero, C.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Russell, P. St. J.

Russell, P.St.J.

Russell, Philip St. J.

Philip St. J. Russell, “Photonic crystal fibers,” Science 299 (358–362) 2003
[Crossref] [PubMed]

Rutt, H. N.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Schulte, A.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mat. 3, 187–203 (1994).
[Crossref]

Stegeman, G.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Stegeman, R.

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Stryland, E. W. V.

L. L. Chase and E. W. V. Stryland, “Nonlinear optical properties” in Handbook of laser science and technology supplement 2: optical materials, M. J. Weber, ed. (CRC Press), Section 8.

Taylor, A. J.

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mat. 3, 187–203 (1994).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mat. 3, 187–203 (1994).
[Crossref]

West, Y.D.

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

Electron. Lett. (2)

T.M. Monro, Y.D. West, D. W. Hewak, N. G. R. Broderick, and D.J Richardson, “Chalcogenide holey fibers,” Electron. Lett. 36, 1998–2000 (2000).
[Crossref]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibers,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Nature (1)

J. C. Knight, “Photonic Crystal fibres,” Nature 424, 847–851 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mat. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mat. 3, 187–203 (1994).
[Crossref]

Opt/ Lett/ (1)

R. Stegeman, L. Jankovic, H. Kim, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, Y. Guo, A. Schulte, and T. Cardinal, “Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica,” Opt/ Lett/ 28, 1126–1128 (2003).
[Crossref]

Science (1)

Philip St. J. Russell, “Photonic crystal fibers,” Science 299 (358–362) 2003
[Crossref] [PubMed]

Other (4)

R. A. H. El-Mallawany, Tellurite glasses handbook physical properties and data (CRC Press, 2002), Chap. 10.

G. P. Agrawal, Nonlinear Fiber optics (Academic Press), Chap. 2.

L. L. Chase and E. W. V. Stryland, “Nonlinear optical properties” in Handbook of laser science and technology supplement 2: optical materials, M. J. Weber, ed. (CRC Press), Section 8.

E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of tellurite fibers with zero dispersion near 1550 nm,” Proc. 28th European Conference on Optical Communications, Paper 3.2.3, Copenhagen (2002)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Photograph showing the cross-section of the die used for extrusion, (b) Electron micrograph of an extruded tellurite preform, of outer diameter 1mm, (c) Electron micrograph of tellurite PCF and (d) Transmission view of a tellurite PCF observed under microscope.

Fig. 2.
Fig. 2.

Measured spectral attenuation in a Tellurite Photonic Crystal Fiber. The size of the core is 7 µm. The minimum measured loss in this fiber is 2.3 dB/m. The cutback measurement was done on a fibre length of 2.5 m.

Fig. 3.
Fig. 3.

Stimulated RamaStimulated Raman spectra from a Tellurite PCF of 1.02m length, using an pump laser wavelength of 1064 nm. All the incident pulse energy values given in the right are in µJ. The coupling efficiency is about 30%.

Metrics