Abstract

We propose a novel delay element for polarization mode dispersion (PMD) compensation by employing a tunable high-birefringence linearly chirped grating. The device can adjust differential group delay in a linearly continuous way and its performance is demonstrated by compensating 10-Gb/s signal with the first-order PMD. The tradeoff between PMD compensation capability of the device and the power penalty caused by the chromatic dispersion of the grating has also been studied.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Lee, R. Khosravani, J. Peng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, �??Highbirefringence nonlinearly-chirped fiber Bragg grating for tunable compensation of polarization mode dispersion,�?? Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1999) pp. 272-274.
  2. J. Kim, H. Yong, N. Park, and B. Lee., �??Polarization-mode-dispersion compensator using a polarization beam splitter and quarter-wave plates,�?? Appl. Opt. 40, 4473-4475 (2001).
    [CrossRef]
  3. H. Rosenfeldt, C. Knothe, and E. Brinkmeyer, �??Component for optical PMD-compensation in a WDM environment,�?? European Conference on Optical Communication, pp.135-136 (2000).
  4. E. Brinkmeyer, �??PMD compensation,�?? European Conference on Optical Communication, No.9.3.1 ( 2002)
  5. M. Schiano, and G. Zaffiro, �??Polarization mode dispersion in chirped fiber gratings,�?? European Conference on Optical Communication (Optical Society of America, Washington, D.C., 1998) pp. 403-404.
  6. T. Takahashi, T. Imai and M. Aiki, �??Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,�?? Electron. Lett. 30, 348-349 (1994).
    [CrossRef]
  7. T. Ozeki, M. Yoshimura, T. Kudo, and H. Ibe, �??Polarization mode dispersion equalization experiment using a variable equalizing optical circuit controlled by a pulse-waveform-comparison technique,�?? Conference on Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1994) TuN4.
  8. Z. Pan, Y. Xie, S. lee, A. E. Willner, �??Tuanble compensation for polarization-mode dispersion using a birefringent nonlinearly-chirped Bragg grating in a dual-pass configuration,�?? U.S. Patent 6,400,869 B2, 2002.
  9. Y. Horiuchi, Y. Namihira, H. Wakabayashi, �??Chromatic dispersion measurement in 1.55 um narrow-band region using a tunable external-cavity laser,�?? IEEE Photon.Technol. Lett. 1, 458-460 (1989).
    [CrossRef]
  10. Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, N. Liu, �??Bidirectional grating wavelength shifter with a broad-range tunablility by using a beam of uniform strength,�?? IEEE Photon. Technol. Lett. 13, 326-328 (2001).
    [CrossRef]
  11. G. P. Agrawal, Fiber-optic communications systems, Third Edition, (John Wiley & Sons Inc, 2002), chap.5.
    [CrossRef]
  12. C. D. Poole and C. R. Giles, �??Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber,�?? Opt. Lett. 13, 155-157 (1988).
    [CrossRef] [PubMed]
  13. J. P. Gorden, and H. Kogelnik, �??PMD fundamentals: Polarization mode dispersion in optical fibers,�?? Proc. National Academy of Sciences 97, 4541-4550 (2000).
    [CrossRef]
  14. C. D. Poole, R. E. Wagner, �??Phenomenological approach to polarization dispersion in long single-mode fibers,�?? Electron. Lett. 22, 1029-1030 (1986).
    [CrossRef]

Appl. Opt. (1)

ECOC 1998 (1)

M. Schiano, and G. Zaffiro, �??Polarization mode dispersion in chirped fiber gratings,�?? European Conference on Optical Communication (Optical Society of America, Washington, D.C., 1998) pp. 403-404.

ECOC 2000 (1)

H. Rosenfeldt, C. Knothe, and E. Brinkmeyer, �??Component for optical PMD-compensation in a WDM environment,�?? European Conference on Optical Communication, pp.135-136 (2000).

ECOC 2002 (1)

E. Brinkmeyer, �??PMD compensation,�?? European Conference on Optical Communication, No.9.3.1 ( 2002)

Electron. Lett. (2)

T. Takahashi, T. Imai and M. Aiki, �??Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,�?? Electron. Lett. 30, 348-349 (1994).
[CrossRef]

C. D. Poole, R. E. Wagner, �??Phenomenological approach to polarization dispersion in long single-mode fibers,�?? Electron. Lett. 22, 1029-1030 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Qin, Q. Zeng, X. Yang, D. Feng, L. Ding, G. Kai, Z. Liu, S. Yuan, X. Dong, N. Liu, �??Bidirectional grating wavelength shifter with a broad-range tunablility by using a beam of uniform strength,�?? IEEE Photon. Technol. Lett. 13, 326-328 (2001).
[CrossRef]

IEEE Photon.Technol. Lett. (1)

Y. Horiuchi, Y. Namihira, H. Wakabayashi, �??Chromatic dispersion measurement in 1.55 um narrow-band region using a tunable external-cavity laser,�?? IEEE Photon.Technol. Lett. 1, 458-460 (1989).
[CrossRef]

OFC 1994 (1)

T. Ozeki, M. Yoshimura, T. Kudo, and H. Ibe, �??Polarization mode dispersion equalization experiment using a variable equalizing optical circuit controlled by a pulse-waveform-comparison technique,�?? Conference on Optical Fiber Communication, (Optical Society of America, Washington, D.C., 1994) TuN4.

OFC 1999 (1)

S. Lee, R. Khosravani, J. Peng, A. E. Willner, V. Grubsky, D. S. Starodubov, and J. Feinberg, �??Highbirefringence nonlinearly-chirped fiber Bragg grating for tunable compensation of polarization mode dispersion,�?? Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1999) pp. 272-274.

Opt. Lett. (1)

Proc. National Academy of Sciences 2000 (1)

J. P. Gorden, and H. Kogelnik, �??PMD fundamentals: Polarization mode dispersion in optical fibers,�?? Proc. National Academy of Sciences 97, 4541-4550 (2000).
[CrossRef]

Other (2)

G. P. Agrawal, Fiber-optic communications systems, Third Edition, (John Wiley & Sons Inc, 2002), chap.5.
[CrossRef]

Z. Pan, Y. Xie, S. lee, A. E. Willner, �??Tuanble compensation for polarization-mode dispersion using a birefringent nonlinearly-chirped Bragg grating in a dual-pass configuration,�?? U.S. Patent 6,400,869 B2, 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

System diagram (a) Schematic diagram of the group delay and amplitude response of a Hi-Bi LCFBG (b) Configuration of the proposed delay element. The incoming signal has polarization components along both the fast (Pf) and slow (Ps) axis. The device generates the relative delay between the two polarizations for the Bragg reflected signal (λi ), while it does not affect the signal (λ 0) outside the grating bandwith.

Fig. 2.
Fig. 2.

Relative time delay for two polarization states.

Fig. 3.
Fig. 3.

(a) Reflection spectrum of two polarization states. Wavelength tuning shifts the passband of the grating to longer or shorter wavelength regime for light polarized along the slow (dashed line) and fast (solid line) polarizations without changing in shape of spectrum (b) Measured polarization states.

Fig. 4.
Fig. 4.

DGD as a function of wavelength tuning of the grating.

Fig. 5.
Fig. 5.

Eye diagram measurement.

Fig. 6.
Fig. 6.

BER curves for different input powers at 50 ps FWHM pulsewidth.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P in ( t ) = ε ̂ a M = l l b n + m G ( t ( κ + n 1 M ) T b )
E out = a + E + + a E
E ± = 1 2 π + E a ( ω ) e jωt ε ̂ ± e j ( ϕ ± ± Δ τ 2 ( ω ω 0 ) + 1 2 ψ ± ( ω ω 0 ) 2 ) d ω

Metrics