Abstract

We present an ocular adaptive optics system with a wavefront sampling rate of 240 Hz and maximum recorded closed-loop bandwidth close to 25 Hz, but with typical performances around 10 Hz. The measured bandwidth depended on the specific system configuration and the particular subject tested. An analysis of the system performance as a function of achieved bandwidth showed consistently higher Strehl ratios for higher closed-loop bandwidths. This may be attributed to a combination of limitations on the available technology and the dynamics of ocular aberrations. We observed dynamic behaviour with a maximum frequency content around 30 Hz.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M.S. Smirnov, �??Measurement of the wave aberration of the human eye,�?? Biophys. 7, 766�??795 (1961).
  2. J. Liang and D.R. Williams, �??Supernormal vision and high resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A. 14, 2884�??2892 (1997).
    [CrossRef]
  3. R. Navarro, E. Moreno-Barriuso, S. Bara, and T. Mancebo, �??Phase plates for wave-aberration compensation in the human eye,�?? Opt. Lett. 25, 236�??238 (2000).
    [CrossRef]
  4. H. Hofer, L. Chen, G.Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, �??Improvement in retinal image quality with dynamic correction of the eye�??s aberrations,�?? Opt. Express 8, 631�??643 (2001), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631</a>.
    [CrossRef] [PubMed]
  5. E.J. Fernández, I. Iglesias, and P. Artal. �??Closed-loop adaptive optics in the human eye,�?? Opt. Lett. 26, 746�??748 (2001).
    [CrossRef]
  6. M. Glanc, �??Applications ophtalmologiques de l�??optique adaptive,�?? PhD thesis, Université de Pais-Sud (2002).
  7. A. Roorda, F. Romero-Borja, W.J. Donnelly III, H. Queener, T.J. Hebert, and M.C.W. Campbell, �??Adaptive optics scanning laser ophthalmoscopy,�?? Opt. Express 10 405�??412 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a>.
    [CrossRef] [PubMed]
  8. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D.R. Williams, �??Use of a michroelectromechanical mirror for adaptive optics in the human eye,�?? Opt. Lett. 27, 1537�??1539 (2002).
    [CrossRef]
  9. H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, �??Dynamics of the eye�??s wave aberration,�?? J. Opt. Soc. Am. A 18, 597�??506 (2001).
    [CrossRef]
  10. L. Diaz Santana Haro and J.C. Dainty, �??Effects of retinal scattering in the ocular double�??pass process,�?? J. Opt. Soc. Am. 18, 1437�??1444 (2001).
    [CrossRef]
  11. L. Diaz Santana Haro and J.C. Dainty, �??Single�??pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence,�?? Opt. Lett. 24, 61�??63 (1999).
    [CrossRef]
  12. A.V. Larichev, P.V. Ivanov, I.G. Iroshnikov, and V.I. Shmal�??gauzen, �??Measurement of eye aberrations in a speckle field,�?? Quantum Electron. 31, 1108�??1112 (2001).
    [CrossRef]
  13. C. Paterson, I. Munro, and J.C. Dainty, �??A low cost adaptive optics system using a membrane mirror,�?? Opt. Express 6, 175�??185 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-9-175">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-9-175</a>.
    [CrossRef] [PubMed]
  14. H.T. Kasprzak and J.W. Jaronski, �??Measurement of fine dynamic changes of the corneal topography by use of interferometry,�?? in Interferometry XI: Applications, Proc. SPIE, 4778, 169�??176 (2002).
    [CrossRef]

Biophys. (1)

M.S. Smirnov, �??Measurement of the wave aberration of the human eye,�?? Biophys. 7, 766�??795 (1961).

J. Opt. Soc. Am. (1)

L. Diaz Santana Haro and J.C. Dainty, �??Effects of retinal scattering in the ocular double�??pass process,�?? J. Opt. Soc. Am. 18, 1437�??1444 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, �??Dynamics of the eye�??s wave aberration,�?? J. Opt. Soc. Am. A 18, 597�??506 (2001).
[CrossRef]

J. Liang and D.R. Williams, �??Supernormal vision and high resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A. 14, 2884�??2892 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

H.T. Kasprzak and J.W. Jaronski, �??Measurement of fine dynamic changes of the corneal topography by use of interferometry,�?? in Interferometry XI: Applications, Proc. SPIE, 4778, 169�??176 (2002).
[CrossRef]

Quantum Electron. (1)

A.V. Larichev, P.V. Ivanov, I.G. Iroshnikov, and V.I. Shmal�??gauzen, �??Measurement of eye aberrations in a speckle field,�?? Quantum Electron. 31, 1108�??1112 (2001).
[CrossRef]

Other (1)

M. Glanc, �??Applications ophtalmologiques de l�??optique adaptive,�?? PhD thesis, Université de Pais-Sud (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the optical setup.

Fig. 2.
Fig. 2.

Dynamics of ocular aberrations. (a) Wavefront rms measured at 240 Hz over approximately 4 s. (b) Power spectrum of the signal in (a) showing dynamic behaviour in excess of 30 Hz.

Fig. 3.
Fig. 3.

Asymmetric ocular double-pass PSF with and without adaptive compensation.

Fig. 4.
Fig. 4.

System’s performance as a function of bandwidth

Tables (1)

Tables Icon

Table 1. Correlation and confidence values for the data in Fig. 4.

Metrics