Abstract

Strong guiding provided by the high-delta microstructured fibers allows for efficient intermodally phase-matched harmonic generation with femtosecond pumping at telecom wavelengths. Visible harmonics are generated in a number of distinct transverse modes of the structure. We present a detailed experimental and theoretical study of the third harmonic generation in such fibers including phase-matching wavelengths, far-field intensity distributions and polarization dependence. Good agreement between the theory and experiment is achieved.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. H. Stolen, W. N. Leibolt, �??Optical fiber modes using stimulated four-photon mixing,�?? Appl. Opt. 15, 239 (1976).
    [CrossRef] [PubMed]
  2. Y. Ohmori, Y. Sasaki, �??Two-wave sum frequency light generation in optical fibers,�?? IEEE J. Quantum Electron. 18, 758 (1982).
    [CrossRef]
  3. J. M. Gabriagues, �??Third-harmonic and three-wave sum-frequency light generation in an elliptical-core optical fiber,�?? Opt. Lett. 8, 183 (1983).
    [CrossRef] [PubMed]
  4. U. Osterberg, W. Margulis, �??Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,�?? Opt. Lett. 11, 516 (1986).
    [CrossRef] [PubMed]
  5. R. W. Terhune, D. A. Weinberger �??Second-harmonic generation in fibers,�?? J. Opt. Soc. Am. B 4, 661 (1987).
    [CrossRef]
  6. R. H. Stolen, H. W. K. Tom �??Self-organized phase-matched harmonic generation in optical fibers,�?? Opt. Lett. 12, 585 (1987).
    [CrossRef] [PubMed]
  7. B. P. Antonyuk, V. B. Antonyuk, �??Self-organization of excitations in Ge-doped silica fibers and its role in second harmonic generation,�?? Uspekhi Fizicheskih Nauk; 171, 61 (2001); English translation: Physics-Uspekhi, 44, 53 (2001).
    [CrossRef]
  8. D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, M. Razeghi, �??Phase-matched optical second harmonic generation in GaN and AlN slub waveguides,�?? J. Appl. Phys. 85, 2497 (1999).
    [CrossRef]
  9. K. Chikuma, S. Umegaki, �??Characteristics of optical second-harmonic generation due to Cerenkov-radiation-type phase matching,�?? J. Opt. Soc. Am. B 7, 768 (1990).
    [CrossRef]
  10. J. Thogersen, J. Mark, �??Third harmonic generation in standard and erbium-doped fibers,�?? Opt. Commun. 110, 435 (1994).
    [CrossRef]
  11. G. Y.Wang, E. M. Garmire, �??High-efficiency generation of ultrashort second-harmonic pulses based on Cerenkov geometry,�?? Opt. Lett. 19, 254 (1994).
    [CrossRef] [PubMed]
  12. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  13. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, �??Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,�?? Opt. Lett. 26, 1158 (2001).
    [CrossRef]
  14. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, �??Nonlinear generation of very high-order UV modes in microstructured fibers,�?? Opt. Express 11, 910 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910</a>.
    [CrossRef] [PubMed]
  15. F. G. Omenetto, A. Efimov, A. J. Taylor, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, �??Polarization dependent harmonic generation in microstructured fibers,�?? Opt. Express 11, 61 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-61">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-61</a>.
    [CrossRef] [PubMed]
  16. N. I. Koroteev, S. M. Zheltikov, �??Chirp control in third-harmonic generation due to cross-phase modulation,�?? Appl. Phys. B 67, 53 (1998).
    [CrossRef]

Appl. Opt.

Appl. Phys. B

N. I. Koroteev, S. M. Zheltikov, �??Chirp control in third-harmonic generation due to cross-phase modulation,�?? Appl. Phys. B 67, 53 (1998).
[CrossRef]

IEEE J. Quantum Electron.

Y. Ohmori, Y. Sasaki, �??Two-wave sum frequency light generation in optical fibers,�?? IEEE J. Quantum Electron. 18, 758 (1982).
[CrossRef]

J. Appl. Phys.

D. N. Hahn, G. T. Kiehne, J. B. Ketterson, G. K. L. Wong, P. Kung, A. Saxler, M. Razeghi, �??Phase-matched optical second harmonic generation in GaN and AlN slub waveguides,�?? J. Appl. Phys. 85, 2497 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

J. Thogersen, J. Mark, �??Third harmonic generation in standard and erbium-doped fibers,�?? Opt. Commun. 110, 435 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Physics-Uspekhi

B. P. Antonyuk, V. B. Antonyuk, �??Self-organization of excitations in Ge-doped silica fibers and its role in second harmonic generation,�?? Uspekhi Fizicheskih Nauk; 171, 61 (2001); English translation: Physics-Uspekhi, 44, 53 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Phase-matching for the THG process in a weakly guiding fiber with core-cladding index difference of 0.01. Guided modes are located between core and cladding index curves and radiation modes comprise a continuum below the cladding line. Cherenkov-type phase matching is schematically shown at the top.

Fig. 2.
Fig. 2.

Modeling details of cobweb fibers: 1.5µm core fiber SEM image at low resolution, a); at high resolution, b); and the structure used for modeling, c). Same for 2.5µm core fiber, d), e), f).

Fig. 3.
Fig. 3.

Modal effective indices in the visible (squares) for 2.5 µm core fiber. All the modes lie under the silica dispersion line (white curve). Fundamental quasi-linearly polarized modes have the highest indices which differ slightly for two orthogonal eigen-polarizations (red and black curves). Also shown are the fundamental modes at fundamental wavelength shifted by three photons into the visible (open circles, red and black curves).

Fig. 4.
Fig. 4.

Close-up view of the phase-matching points between the polarization-split fundamental modes at the fundamental wavelength and higher-order modes in the visible. Farfield profiles for four visible modes involved are also shown.

Fig. 5.
Fig. 5.

Modal effective indices in the visible for 1.5µm core fiber. Three-photon shifted modes at the fundamental wavelength are shown in black curves with open circles.

Fig. 6.
Fig. 6.

Visible, a), c), and infrared, b), d) spectra at the output of 65 mm-long piece of 2.5µm core fiber for different input powers. Top and bottom figures correspond to two orthogonal eigen-axes of the fiber. Eigen-axes are marked in degrees of waveplate angular position in front of the fiber.

Fig. 7.
Fig. 7.

THG, a) and IR, b) spectra at the output of 2.5µm core fiber for eigen-axis 79° and different pump wavelengths: 1450 nm, top, 1500 nm, middle, and 1550 nm bottom.

Fig. 8.
Fig. 8.

Theoretical, top row, and experimental, bottom row, far-field intensity profiles of THG modes at the output of 2.5µm core fiber. Modes 21 and 22 could not be separated experimentally. Note that orientation of the experimental modes will match that of theoretical if all the experimental modes are rotated ~30° counterclockwise.

Fig. 9.
Fig. 9.

Visible, a), c), and infrared, b), d) spectra at the output of 40 mm long piece of 1.5µm core fiber for varying input powers. Similar to Fig. 6, top and bottom figures correspond to two orthogonal eigen-axes of the fiber.

Fig. 10.
Fig. 10.

Theoretical, top row, and experimental, bottom row, far-field intensity profiles of THG modes at the output of 1.5µm core fiber. Figures a), b), e), and f) correspond to THG generation from higher-order mode at the fundamental wavelength; profiles shown in c), d), g), and h) originate from the fundamental mode.

Metrics