Abstract

We present the magneto-optic method to measure the local birefringence of single-mode fibers. We use this method to study birefringence of various telecommunication fibers submitted to external twist. Analysis of measurements gives access to the linear and circular part of the birefringence. This allows to evaluate the stress-optic coefficient g with a good accuracy for each fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical theory for polarization mode dispersion of spun and twisted fiber

Muguang Wang, Tangjun Li, and Shuisheng Jian
Opt. Express 11(19) 2403-2410 (2003)

Measurement of the elliptical birefringence of single-mode optical fibers

Thierry Chartier, Ammar Hideur, Cafer Özkul, François Sanchez, and Guy M. Stéphan
Appl. Opt. 40(30) 5343-5353 (2001)

Angular displacement fiber-optic sensor: theoretical and experimental study

Nathalie Mancier, Ayoub Chakari, Patrick Meyrueis, and Michel Clément
Appl. Opt. 34(28) 6489-6495 (1995)

References

  • View by:
  • |
  • |
  • |

  1. S. Bigoet al., “1.5 Tbit/s WDM transmission of 150 channels at 10Gbit/s overt 4×100km of TeraLight fibre,”Proc. European Conference on Optical Communications, ECOC’99, post dead-line paper PD2-9, (1999).
  2. P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
    [Crossref]
  3. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979).
    [Crossref] [PubMed]
  4. R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” IEEE J. Lightwave Technol. 16, 1583–1588 (1998).
    [Crossref]
  5. I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
    [Crossref]
  6. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” IEEE J. Lightwave Technol. 1, 312–331 (1983).
    [Crossref]
  7. M. Wegmuller, M. Legré, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” IEEE J. Lightwave Technol. 20, 828–835 (2002).
    [Crossref]
  8. M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres,” Opt. Quantum Electron. 12, 449–461 (1980).
    [Crossref]
  9. A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers : theory and experiments,” IEEE J. Lightwave Technol. 20, 1149–1159 (2002).
    [Crossref]
  10. P.-G. Zhang and D. Irvine-Halliday, “Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation,” IEEE J. Lightwave Technol. 12, 597–602 (2002).
    [Crossref]
  11. D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, “Beat-length measurement of high-birefringence polarization-maintaining optical fiber using the dc Faraday magneto-optic effect,” Opt. Eng. 39, 1310–1315 (2000).
    [Crossref]
  12. T. Chartier, A. Hideur, C. Ozkul, F. Sanchez, and G. Stéphan, “Measurement of the elliptical birefringence of single-mode optical fibers,” Appl. Opt. 40, 5343–5353 (2001).
    [Crossref]
  13. A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
    [Crossref]
  14. B. Efron and R.J. Tibshirani, “An introduction to the bootstrap,” Monographs on Statistics and Applied Probability 57, Chapman & Hall (1993).
  15. P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).
  16. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19, 2606–2611 (1980).
    [Crossref] [PubMed]

2003 (2)

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

2002 (3)

M. Wegmuller, M. Legré, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” IEEE J. Lightwave Technol. 20, 828–835 (2002).
[Crossref]

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers : theory and experiments,” IEEE J. Lightwave Technol. 20, 1149–1159 (2002).
[Crossref]

P.-G. Zhang and D. Irvine-Halliday, “Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation,” IEEE J. Lightwave Technol. 12, 597–602 (2002).
[Crossref]

2001 (1)

2000 (1)

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, “Beat-length measurement of high-birefringence polarization-maintaining optical fiber using the dc Faraday magneto-optic effect,” Opt. Eng. 39, 1310–1315 (2000).
[Crossref]

1998 (1)

R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” IEEE J. Lightwave Technol. 16, 1583–1588 (1998).
[Crossref]

1983 (1)

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” IEEE J. Lightwave Technol. 1, 312–331 (1983).
[Crossref]

1981 (1)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[Crossref]

1980 (2)

M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres,” Opt. Quantum Electron. 12, 449–461 (1980).
[Crossref]

A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19, 2606–2611 (1980).
[Crossref] [PubMed]

1979 (1)

Bertaina, A.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

Berthelot, L.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

Bigo, S.

S. Bigoet al., “1.5 Tbit/s WDM transmission of 150 channels at 10Gbit/s overt 4×100km of TeraLight fibre,”Proc. European Conference on Optical Communications, ECOC’99, post dead-line paper PD2-9, (1999).

Boniort, J. Y.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Brehm, C.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Bruyère, F.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Chartier, T.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

T. Chartier, A. Hideur, C. Ozkul, F. Sanchez, and G. Stéphan, “Measurement of the elliptical birefringence of single-mode optical fibers,” Appl. Opt. 40, 5343–5353 (2001).
[Crossref]

de Montmorillon, L.-A.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

Efron, B.

B. Efron and R.J. Tibshirani, “An introduction to the bootstrap,” Monographs on Statistics and Applied Probability 57, Chapman & Hall (1993).

Galtarossa, A.

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers : theory and experiments,” IEEE J. Lightwave Technol. 20, 1149–1159 (2002).
[Crossref]

Gisin, N.

M. Wegmuller, M. Legré, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” IEEE J. Lightwave Technol. 20, 828–835 (2002).
[Crossref]

Guenot, P.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

Hideur, A.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

T. Chartier, A. Hideur, C. Ozkul, F. Sanchez, and G. Stéphan, “Measurement of the elliptical birefringence of single-mode optical fibers,” Appl. Opt. 40, 5343–5353 (2001).
[Crossref]

Irvine-Halliday, D.

P.-G. Zhang and D. Irvine-Halliday, “Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation,” IEEE J. Lightwave Technol. 12, 597–602 (2002).
[Crossref]

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, “Beat-length measurement of high-birefringence polarization-maintaining optical fiber using the dc Faraday magneto-optic effect,” Opt. Eng. 39, 1310–1315 (2000).
[Crossref]

Jeunhomme, L.

M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres,” Opt. Quantum Electron. 12, 449–461 (1980).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[Crossref]

Khan, M. R.

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, “Beat-length measurement of high-birefringence polarization-maintaining optical fiber using the dc Faraday magneto-optic effect,” Opt. Eng. 39, 1310–1315 (2000).
[Crossref]

Laklalech, H.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Legré, M.

M. Wegmuller, M. Legré, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” IEEE J. Lightwave Technol. 20, 828–835 (2002).
[Crossref]

Lempereur, S.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

Mélin, G.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

Monerie, M.

M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres,” Opt. Quantum Electron. 12, 449–461 (1980).
[Crossref]

Nouchi, P.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Ozkul, C.

Pagnoux, D.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

Palmieri, L.

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers : theory and experiments,” IEEE J. Lightwave Technol. 20, 1149–1159 (2002).
[Crossref]

Perrin, B.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Peyrilloux, A.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

Ramos, J.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Rashleigh, S. C.

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” IEEE J. Lightwave Technol. 1, 312–331 (1983).
[Crossref]

Roy, P.

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

Sanchez, F.

Sansonetti, P.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Schuh, R. E.

R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” IEEE J. Lightwave Technol. 16, 1583–1588 (1998).
[Crossref]

Shan, X.

R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” IEEE J. Lightwave Technol. 16, 1583–1588 (1998).
[Crossref]

Siddiqui, A. S.

R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” IEEE J. Lightwave Technol. 16, 1583–1588 (1998).
[Crossref]

Sillard, P.

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

Simon, A.

Smith, A. M.

Stéphan, G.

Tibshirani, R.J.

B. Efron and R.J. Tibshirani, “An introduction to the bootstrap,” Monographs on Statistics and Applied Probability 57, Chapman & Hall (1993).

Ulrich, R.

Von Wirth, J.

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Wegmuller, M.

M. Wegmuller, M. Legré, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” IEEE J. Lightwave Technol. 20, 828–835 (2002).
[Crossref]

Zhang, P.-G.

P.-G. Zhang and D. Irvine-Halliday, “Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation,” IEEE J. Lightwave Technol. 12, 597–602 (2002).
[Crossref]

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, “Beat-length measurement of high-birefringence polarization-maintaining optical fiber using the dc Faraday magneto-optic effect,” Opt. Eng. 39, 1310–1315 (2000).
[Crossref]

Appl. Opt. (3)

C.R. Physique (1)

P. Nouchi, L.-A. de Montmorillon, P. Sillard, A. Bertaina, and P. Guenot, “Optical fiber design for wavelength-multiplexed transmission,” C.R. Physique 4, 23–29 (2003).
[Crossref]

IEEE J. Lightwave Technol. (6)

R. E. Schuh, X. Shan, and A. S. Siddiqui, “Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters,” IEEE J. Lightwave Technol. 16, 1583–1588 (1998).
[Crossref]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” IEEE J. Lightwave Technol. 1, 312–331 (1983).
[Crossref]

M. Wegmuller, M. Legré, and N. Gisin, “Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry,” IEEE J. Lightwave Technol. 20, 828–835 (2002).
[Crossref]

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers : theory and experiments,” IEEE J. Lightwave Technol. 20, 1149–1159 (2002).
[Crossref]

P.-G. Zhang and D. Irvine-Halliday, “Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation,” IEEE J. Lightwave Technol. 12, 597–602 (2002).
[Crossref]

A. Peyrilloux, T. Chartier, A. Hideur, L. Berthelot, G. Mélin, S. Lempereur, D. Pagnoux, and P. Roy, “Theoretical and experimental study of the birefringence of a photonic crystal fiber,” IEEE J. Lightwave Technol. 21, 536–539 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

I. P. Kaminow, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[Crossref]

Opt. Eng. (1)

D. Irvine-Halliday, M. R. Khan, and P.-G. Zhang, “Beat-length measurement of high-birefringence polarization-maintaining optical fiber using the dc Faraday magneto-optic effect,” Opt. Eng. 39, 1310–1315 (2000).
[Crossref]

Opt. Quantum Electron. (1)

M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres,” Opt. Quantum Electron. 12, 449–461 (1980).
[Crossref]

Other (3)

S. Bigoet al., “1.5 Tbit/s WDM transmission of 150 channels at 10Gbit/s overt 4×100km of TeraLight fibre,”Proc. European Conference on Optical Communications, ECOC’99, post dead-line paper PD2-9, (1999).

B. Efron and R.J. Tibshirani, “An introduction to the bootstrap,” Monographs on Statistics and Applied Probability 57, Chapman & Hall (1993).

P. Nouchi, H. Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyère, C. Brehm, J. Y. Boniort, and B. Perrin, “Low-PMD Dispersion-Compensating fibers,” Proc. 21st Eur. Conf. Opt. Commun. (ECOC’95-Brussels).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Signals detected with 0, 4, and 8 turns of twist for fiber F1.

Fig. 3.
Fig. 3.

Evolution of Δβ versus γ for fiber F1.

Fig. 4.
Fig. 4.

Evolution of Δβ versus γ-γ 0 for each fiber.

Tables (1)

Tables Icon

Table 1. Parameters measured for each fiber

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ β = Δ β l 2 + ( g γ 2 γ ) 2 .
L b = 2 π Δ β .
Δ β = Δ β l 2 + ( g 2 ) 2 ( γ γ 0 ) 2 .

Metrics