Abstract

The simulation of beam propagation is used to examine the sensitivity to misalignments of a practical heterodyne lidar because of the presence of refractive turbulence. At shorter wavelengths, and under general atmospheric conditions, the performance of a realistic instrument is never well described by either of the ideal monostatic and bistatic arrangements when misalignment is taken into consideration.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Belmonte, �??Feasibility study for the simulation of beam propagation consideration of coherent lidar performance�?? Appl. Opt. 39, 5426-5445 (2000).
    [CrossRef]
  2. A. Belmonte and B. J. Rye, �??Heterodyne lidar returns in turbulent atmosphere performance evaluation of simulated systems,�?? Appl. Opt. 39, 2401-2411 (2000).
    [CrossRef]
  3. B. J. Rye, �??Refractive-turbulent contribution to incoherent backscatter heterodyne lidar returns,�?? J. Opt. Soc. Am. 71, 687-691 (1981).
    [CrossRef]
  4. J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993)
  5. A. Belmonte, "Analyzing the efficiency of a practical heterodyne lidar in the turbulent atmosphere: telescopeparameters," Opt. Express 11, 2041-2046 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2041</a>
    [CrossRef] [PubMed]
  6. S. C. Cohen, �??Heterodyne detection: phase front alignment beam spot size and detector uniformity,�?? Appl.Opt. 14, 1953-1959 (1975).
    [CrossRef] [PubMed]
  7. K. Tanaka and N. Ohta, �??Effects of tilt and offset of signal field on heterodyne efficiency,�?? Appl. Opt. 26, 627-632 (1987).
    [CrossRef] [PubMed]
  8. R.G. Frehlich, �??Effects of refractive turbulence on coherent laser radar,�?? Appl. Opt. 32, 2122-2139 (1993)
    [CrossRef] [PubMed]
  9. R.G. Frehlich, M. J. Kavaya, �??Coherent laser radar performance for general atmospheric refractive turbulence,�?? Appl. Opt. 30, 5325-5352 (1991).
    [CrossRef] [PubMed]
  10. B. J. Rye, �??Antenna parameters for incoherent backscatter heterodyne lidar,�?? Appl. Opt. 18, 1390-1398 (1979).
    [CrossRef] [PubMed]
  11. A. Ishimaru, Wave propagation and scattering in random media, (Academic Press, New York, 1978).
  12. W.B. Miller, J.C. Ricklin and L.C. Andrews, �??Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,�?? J. Opt. Soc. Am. A 10, 661-672 (1993).
    [CrossRef]
  13. See papers presented on the Device Technology�??s session in Proceedings of the Twelfth Biennial Coherent Laser Radar Technology and Applications Conference, Bar Harbor, Maine, 15-20 June, 2003.
  14. A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily and V. I. Shishov, �??Laser irradiance propagation in turbulent media,�?? Proc. IEEE 63, 790-811 (1975).
    [CrossRef]
  15. R. L. Fante, �??Electromagnetic beam propagation in turbulent media,�?? Proc. IEEE 63, 1669-1692 (1975).
    [CrossRef]
  16. R.F. Lutomirski, H.T. Yura, �??Propagation of a finite optical beam in an inhomogeneous medium,�?? Appl. Opt. 10, 1652-1658 (1971).
    [CrossRef] [PubMed]
  17. H.T. Yura, �??Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium,�?? Appl. Opt. 11, 1399-1406 (1972).
    [CrossRef] [PubMed]

Appl. Opt (2)

A. Belmonte, �??Feasibility study for the simulation of beam propagation consideration of coherent lidar performance�?? Appl. Opt. 39, 5426-5445 (2000).
[CrossRef]

K. Tanaka and N. Ohta, �??Effects of tilt and offset of signal field on heterodyne efficiency,�?? Appl. Opt. 26, 627-632 (1987).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl.Opt. (1)

S. C. Cohen, �??Heterodyne detection: phase front alignment beam spot size and detector uniformity,�?? Appl.Opt. 14, 1953-1959 (1975).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Proc. IEEE (2)

A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily and V. I. Shishov, �??Laser irradiance propagation in turbulent media,�?? Proc. IEEE 63, 790-811 (1975).
[CrossRef]

R. L. Fante, �??Electromagnetic beam propagation in turbulent media,�?? Proc. IEEE 63, 1669-1692 (1975).
[CrossRef]

SPIE (1)

J. Martin, �??Simulation of wave propagation in random media: theory and applications,�?? in Wave Propagation in Random Media (Scintillation), V. I. Tatarskii, A. Ishimaru, and V. Zavorotny, eds., SPIE, Washington (1993)

Other (3)

A. Belmonte and B. J. Rye, �??Heterodyne lidar returns in turbulent atmosphere performance evaluation of simulated systems,�?? Appl. Opt. 39, 2401-2411 (2000).
[CrossRef]

A. Ishimaru, Wave propagation and scattering in random media, (Academic Press, New York, 1978).

See papers presented on the Device Technology�??s session in Proceedings of the Twelfth Biennial Coherent Laser Radar Technology and Applications Conference, Bar Harbor, Maine, 15-20 June, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The receiver plane formulation (left) states the performance of the heterodyne lidar systems in the degree of coherence of the backscattered radiation and its match with the local oscillator field. The target plane formulation (middle) condenses the problem of calculating lidar efficiency to one of computing the transmitted and backpropagated fields along the propagation path and estimating the overlap function of the two irradiances. The target plane formulation allows taking account of the effects of angular beam misalignment Δϑ (right) in heterodyne systems in the presence of atmospheric turbulence (see the text for further details).

Fig. 2.
Fig. 2.

Coherent solid angle [in decibels, 10 log10COH)] as a function of range R for a 2-µm collimated system by use of the simulation of beam propagation in turbulent atmosphere. Different diameter apertures and misalignment angles are considered. The level of turbulence has typical moderate-tostrong daytime value, Cn2 =10-12 m-2/3 . The monostatic (upper dashed line) and bistatic (lower dashed line) ideal system geometries are also shown.

Fig. 3.
Fig. 3.

Similar to Fig. 2 but for weaker-turbulence conditions, Cn2 =10-13 m-2/3 . Although the effects of refractive turbulence on the coherent lidar performance are less apparent than for those presented in Fig. 2, the importance of the disturbances is still pronounced for any range R and most misalignment angles.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ω COH ( R ) = A R R 2 η S ( R )
SNR ( R ) = C ( R ) A R R 2 η S ( R )
Ω COH ( R ) = λ 2 j T ( p , R , t ) j BPLO ( p , R ) d p ,
Ω COH ( R ) = λ 2 j T ( p , R , t ) j BPLO ( p , R ) [ 1 + C j ( p , R ) ] d p ,
C j ( p , R ) = j T ( p , R , t ) j BPLO ( p , R ) j T ( p , R , t ) j BPLO ( p , R ) 1 .

Metrics