Abstract

An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester’s Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam’s spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Dubietis, G. Jonusauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437�??440 (1992).
    [CrossRef]
  2. I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,�?? Opt. Commun. 144, 125�??133 (1997).
    [CrossRef]
  3. I. N. Ross, J. L. Collier, P. Matousek, C. N. Danson, D. Neely, R. M. Allott, D. A. Pepler, C. Hernandez-Gomez, and K. Osvay, �??Generation of terawatt pulses by use of optical parametric chirped pulse amplification,�?? Appl. Opt. 39, 2422�??2427 (2000)
    [CrossRef]
  4. H. Yoshida, E. Ishii, K. Sawai, R. Kodama, H. Fujita, Y. Kitagawa, S. Sakabe, N. Miyanaga, Y. Izawa, T. Yamanaka, and M. Fujita, �??Broadband high-gain pre-amplifier system based on optical parametric chirped pulse amplifier for PW laser,�?? in Conference on Lasers and Electro Optics, Vol. 1, Technical Digest (Optical Society of America, Washington, DC, 2001), pp. 80�??81
  5. X. Yang, Z. Xu, Y. Leng, H. Lu, K. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, �??Multiterawatt laser system based on optical parametric chirped pulse amplification,�?? Opt. Lett. 27, 1135�??1137 (2002).
    [CrossRef]
  6. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, �??Optical parametric chirped-pulse amplifier as an alternative to Ti-sapphire regenerative amplifiers,�?? Appl. Opt. 41, 2923�??2929 (2002)
    [CrossRef] [PubMed]
  7. L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, �??High-conversion- efficiency, optical parametric chirped-pulse-amplification system using spatiotemporally shaped pulses,�?? Opt. Lett. 28, 1245�??1247 (2003); also presented at the OSA Annual Meeting & Exhibit 2002, Orlando, FL, 29 September�??3 October 2002 (TuC4).
    [CrossRef] [PubMed]
  8. I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, S. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, �??Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,�?? Sov. J. Quantum Electron. 20, 1100�??1103 (1990)
    [CrossRef]
  9. I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, S. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, �??Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,�?? Sov. J. Quantum Electron. 20, 1104�??1106 (1990)
    [CrossRef]
  10. L. J. Waxer, J. H. Kelly, J. Rothenberg, A. Babushkin, C. Bibeau, A. Bayramian, and S. Payne, �??Precision spectral sculpting for narrow-band amplification of broadband frequency-modulated pulses,�?? Opt. Lett. 27, 1427�??1429 (2002)
    [CrossRef]
  11. M. D. Skeldon, �??A high-bandwidth electrical waveform generator based on an aperture-coupled stripeline,�?? Rev. Sci. Instrum. 71, 3559�??3566 (2000)
    [CrossRef]
  12. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, �??Analysis and optimization of optical parametric chirped pulse amplification,�?? J. Opt. Soc. Am. B 19, 2945�??2956 (2002).
    [CrossRef]
  13. M. D. Perry, F. G. Patterson, and J. Weston, �??Spectral shaping in chirped-pulse amplification,�?? Opt. Lett. 15, 381�??383 (1990).
    [CrossRef] [PubMed]
  14. Z. Pengfei, Q. Leijia, X. Shaolin, and L. Zung, �??Numerical studies of optical parametric chirped pulse amplification,�?? Opt. Laser Technol. 35, 13�??19 (2003)
    [CrossRef]
  15. S. K. Zhang, M. Fujita, M. Yamanaka, M. Nakatsuka, Y. Izawa, and C. Yamanaka, �??Study of the stability of optical parametric amplification,�?? Opt. Commun. 184, 451�??455 (2000).
    [CrossRef]
  16. M. J. Guardalben, J. Keegan, L. J. Waxer, and J. D. Zuegel, �??Stability of optical parametric amplification: Spatiotemporal considerations in the design of an OPCPA system,�?? presented at the 2002 OSA Annual Meeting, Orlando, FL, 29 September�??3 October 2002 (paper TuC5).
  17. Time-Bandwidth Products, Inc., Zürich, Switzerland, CH-8005, <a href="http://www.tbwp.com">http://www.tbwp.com</a>
  18. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, �??Interactions between light waves in a nonlinear dielectric,�?? Phys. Rev. 127, 1918�??1939 (1962).
    [CrossRef]
  19. R. S. Craxton, �??High efficiency frequency tripling schemes for high power Nd:Glass lasers,�?? IEEE J. Quantum Electron. QE-17, 1771�??1782 (1981)
    [CrossRef]
  20. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer-Verlag, Berlin, 1991), p. 78.
  21. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, �??Parametric amplification and oscillation with walkoff-compensating crystals,�?? J. Opt. Soc. Am. B 14, 460�??474 (1997)
    [CrossRef]

Appl. Opt.

CLEO 2001

H. Yoshida, E. Ishii, K. Sawai, R. Kodama, H. Fujita, Y. Kitagawa, S. Sakabe, N. Miyanaga, Y. Izawa, T. Yamanaka, and M. Fujita, �??Broadband high-gain pre-amplifier system based on optical parametric chirped pulse amplifier for PW laser,�?? in Conference on Lasers and Electro Optics, Vol. 1, Technical Digest (Optical Society of America, Washington, DC, 2001), pp. 80�??81

IEEE J. Quantum Electron

R. S. Craxton, �??High efficiency frequency tripling schemes for high power Nd:Glass lasers,�?? IEEE J. Quantum Electron. QE-17, 1771�??1782 (1981)
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437�??440 (1992).
[CrossRef]

I. N. Ross, P. Matousek, M. Towrie, A. J. Langley, and J. L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,�?? Opt. Commun. 144, 125�??133 (1997).
[CrossRef]

S. K. Zhang, M. Fujita, M. Yamanaka, M. Nakatsuka, Y. Izawa, and C. Yamanaka, �??Study of the stability of optical parametric amplification,�?? Opt. Commun. 184, 451�??455 (2000).
[CrossRef]

Opt. Laser Technol.

Z. Pengfei, Q. Leijia, X. Shaolin, and L. Zung, �??Numerical studies of optical parametric chirped pulse amplification,�?? Opt. Laser Technol. 35, 13�??19 (2003)
[CrossRef]

Opt. Lett.

OSA Annual Meeting 2002

M. J. Guardalben, J. Keegan, L. J. Waxer, and J. D. Zuegel, �??Stability of optical parametric amplification: Spatiotemporal considerations in the design of an OPCPA system,�?? presented at the 2002 OSA Annual Meeting, Orlando, FL, 29 September�??3 October 2002 (paper TuC5).

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, �??Interactions between light waves in a nonlinear dielectric,�?? Phys. Rev. 127, 1918�??1939 (1962).
[CrossRef]

Rev. Sci. Instrum.

M. D. Skeldon, �??A high-bandwidth electrical waveform generator based on an aperture-coupled stripeline,�?? Rev. Sci. Instrum. 71, 3559�??3566 (2000)
[CrossRef]

Sov. J. Quantum Electron.

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, S. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, �??Highly efficient parametric amplification of optical beams. I. Optimization of the profiles of interacting waves in parametric amplification,�?? Sov. J. Quantum Electron. 20, 1100�??1103 (1990)
[CrossRef]

I. A. Begishev, A. A. Gulamov, E. A. Erofeev, E. A. Ibragimov, S. R. Kamalov, T. Usmanov, and A. D. Khadzhaev, �??Highly efficient parametric amplification of optical beams. II. Parametric interaction of waves with conformal profiles,�?? Sov. J. Quantum Electron. 20, 1104�??1106 (1990)
[CrossRef]

Other

Time-Bandwidth Products, Inc., Zürich, Switzerland, CH-8005, <a href="http://www.tbwp.com">http://www.tbwp.com</a>

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer-Verlag, Berlin, 1991), p. 78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Signal output energy versus length of the second crystal for two-crystal, single-stage BBO and LBO preamplifier designs. The solid curve represents the nominal pump input intensity of 1 GW/cm2, and the dashed curves represent ±5% about this intensity. The crystal lengths that provide enhanced stability for each design are indicated by the vertical lines on the graph. The input pump and seed spatial and temporal shapes are the same for both designs, except that the pump beam is narrower in the direction orthogonal to walk-off by 9% for the LBO design and 20% for the BBO design. The arrow indicates the second crystal length of 9 mm for the BBO design shown in Fig. 2(a) and discussed in the text.

Fig. 2.
Fig. 2.

Temporally integrated, normalized signal output beam shapes for the single-stage BBO design with different second-crystal lengths L2 for L1=10 mm. Stability for each case is shown in Fig. 1. (a) L2=9 mm (undersaturated), (b) L2=10.5 mm (peak of the gain curve), (c) L2=10.9 mm (region of enhanced stability), (d) L2=10.9 mm with an external noncollinear angle of 0.5° between pump and seed beams. Conversion efficiencies η are indicated in the figure.

Fig. 3.
Fig. 3.

Normalized, temporal profiles for two of the BBO designs shown in Fig. 2. The simulation uses a 200-fs Gaussian temporal pulse that is stretched in time to provide a linearly chirped, 1.0-ns input seed pulse to the crystals. Beam center: dashed; spatially integrated: green; input: red. (a) For the case of Fig. 2(a), the pulse shape shows little saturation and a gain-narrowing effect. (b) Saturation with reconversion is seen for the case of Fig. 2(d), contributing to a broadening of the pulse compared with Fig. 3(a). Greater reconversion is seen at beam center because of the spatial Gaussian shape of the seed.

Fig. 4.
Fig. 4.

(a) Temporally integrated, normalized signal output beam shape for the single-stage LBO design in the region of enhanced stability (L2=23.5 mm in Fig. 1). The ~15% dip in the center is from greater reconversion in this region as a result of the Gaussian shape of the seed beam. (b) Normalized temporal profile of input seed and output signal pulses for the case shown in Fig. 4(a).

Fig. 5.
Fig. 5.

Experimentally measured pump (a) spatial and (b) temporal shapes are used to illustrate how pump beam intensity modulation affects the signal output near the peak of the gain curve. Two temporal slices of a simulation of the output signal beam are shown in (c) and (d); one at the peak and one at the dip of the pump pulse, respectively.

Fig. 6.
Fig. 6.

Comparison of the output energy and output beam quality for a single-stage LBO design. The axis on the left indicates the normalized signal output energy versus normalized pump input energy, while the axis on the right gives the output signal beam peak-to-mean intensity modulation. The graphs show that a trade-off exists between enhanced energy stability and low near-field intensity modulation.

Fig. 7.
Fig. 7.

Two-stage, all-LBO OPCPA system for the OMEGA EP front end. Nominal pump and signal energies are shown.

Fig. 8.
Fig. 8.

Simulated plots of the signal output energy from the two-stage, all-LBO design shown in Fig. 7 versus the length of the power amplifier for three different preamplifier lengths. Solid lines represent the nominal pump input intensity of 1 GW/cm2, whereas the dashed lines represent ±5% about this nominal intensity.

Fig. 9.
Fig. 9.

Plot of conversion efficiency (squares) and output energy (diamonds) for a two-stage OPCPA design versus the preamplifier input pump beam size. The pump input beam is a 20th-order super-Gaussian with nominal intensity of 1 GW/cm2 for each point plotted. The seed beam of the preamplifier is Gaussian with FWHM of 3.18 mm. The error bars indicate output energy changes for ±5% pump energy fluctuations.

Fig. 10.
Fig. 10.

Size of the signal beam entering the power amplifier versus preamplifier pump beam size for the two-stage design of Fig. 9. Triangles: in the direction of pump beam walkoff; circles: orthogonal to walk-off. The FWHM of the pump beam entering the power amplifier is 6.8 mm.

Fig. 11.
Fig. 11.

For the design shown in Figs. 9 and 10 with preamplifier pump beam FWHM=3.48 mm: (a) Normalized beam cross section for the temporally integrated pump beam input with simulated, spatiotemporal noise (left) and the power-amplifier signal output beam (right); (b) normalized horizontal lineouts through the center of each of the beams shown in (a). Signal: Solid; pump: dashed.

Fig. 12.
Fig. 12.

(a) Spatially integrated, normalized temporal profiles of the input pump and signal input/output pulses for the two-stage design with preamplifier pump beam FWHM=3.48 mm. The seed pulse entering the first crystal of the preamplifier is shown in red; the signal pulse out of the power-amplifier crystal is shown in green. The pump input temporal noise is 11% peak-to-valley (3% rms), whereas the amplified signal output temporal noise is only 8% peak-to-valley (2% rms). The spectral bandwidth of the output pulse is 7.5 nm. (b) Phase accumulated in the OPA for the chirped output pulse shown in (a).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ˜ s ( x , y , z , t ) z = 1 2 γ s E ˜ s ( x , y , z , t ) + ρ s E ˜ s ( x , y , z , t ) y
i K E ˜ p ( x , y , z , t ) E ˜ i * ( x , y , z , t ) exp ( i Δ k · z ) ,
E ˜ i ( x , y , z , t ) z = 1 2 γ i E ˜ i ( x , y , z , t ) + ρ i ( t ) E ˜ i ( x , y , z , t ) y
i ω 2 ω 1 K E ˜ p ( x , y , z , t ) E ˜ s * ( x , y , z , t ) exp ( i Δ k · z ) ,
E ˜ p ( x , y , z , t ) z = 1 2 γ p E ˜ p ( x , y , z , t ) + ρ p E ˜ p ( x , y , z , t ) y
i ω 3 ω 1 K E ˜ s ( x , y , z , t ) E ˜ i ( x , y , z , t ) exp ( i Δ k · z )
K = ω 1 c ( n s n i n p ) 1 2 d eff ,

Metrics