Abstract

An integrated setup allowing high resolution photothermal microscopy and laser damage measurements at the same wavelength has been implemented. The microscope is based on photothermal deflection of a transmitted probe beam : the probe beam (633 nm wavelength) and the CW pump beam (1.06 µm wavelength) are collinear and focused through the same objective. In-situ laser irradiation tests are performed thanks to a pulsed beam (1.06 µm wavelength and 6 nanosecond pulse). We describe this new facility and show that it is well adapted to the detection of sub-micronic absorbing defects, that, once located, can be precisely aimed and irradiated. Photothermal mappings are performed before and after shot, on metallic inclusions in dielectric. Results obtained on gold inclusions of about 600 nm in diameter embedded in silica are presented.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Bloembergen, �??Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,�?? Appl. Opt. 12, 661-664 (1973).
    [CrossRef] [PubMed]
  2. M.R. Kozlowski and R. Chow, �??The role of defects in laser damage of multilayer coatings,�?? in Laser-induced damage in optical materials: 1993, H.E. Bennett, L. Chase, A.H. Guenther, B.E. Newnam and M.J. Soileau, eds. Proc. SPIE 2114, 640-649 (1994).
    [CrossRef]
  3. J. Dijon, T. Poiroux and C. Desrumaux, �??Nano absorbing centers : A key point in laser damage of thin films,�?? in Laser-induced damage in optical materials: 1996, H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam and M.J. Soileau, eds., Proc. SPIE 2966, 315-325 (1997).
    [CrossRef]
  4. F.Y. Genin, A. Salleo, T.V. Pistor and L.L. Chase, �??Role of light intensification by cracks in optical breakdown on surfaces,�?? J. Opt. Soc. Am. A 18, 2607-2616 (2001).
    [CrossRef]
  5. J.Y. Natoli, L. Gallais, H. Akhouayri and C. Amra, �??Laser induced damage of materials in bulk thin films and liquid forms,�?? Appl. Opt. 41, 3156-3166 (2002).
    [CrossRef] [PubMed]
  6. M. Commandre and P. Roche, �??Characterization of optical coatings by photothermal deflection,�?? Appl. Opt. 35, 5021-5034 (1996).
    [CrossRef] [PubMed]
  7. E. Welsch and M. Reichling, �??Micrometer resolved photothermal displacement inspection of optical coatings,�?? J. Mod. Opt. 40, 1455-1475 (1993).
    [CrossRef]
  8. M. Reichling, E. Welsch, A. Duparre and E. Matthias, �??Photothermal absorption microscopy of defects in ZrO2 and MgF2 single layer films,�?? Opt. Eng. 33, 1334-1342 (1994).
    [CrossRef]
  9. A. Gatto and M. Commandre, �??Multiscale mapping technique for the simultaneous estimation of absorption and partial scattering in optical coatings,�?? Appl. Opt. 41, 225-234 (2002).
    [CrossRef] [PubMed]
  10. A. During, C. Fossati and M. Commandre, �??Multi-wavelength imaging of defects in UV optical materials,�?? Appl. Opt. 41, 3118-3126 (2002).
    [CrossRef] [PubMed]
  11. A. During, C. Fossati and M. Commandre, �??Development of a photothermal deflection microscope for multiscale studies of defects,�?? in Laser-induced damage in optical materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau and C. J. Stolz, eds., Proc. SPIE 4679, 400-409 (2002).
    [CrossRef]
  12. D. Boyer, P. Tamarat, A. Maali, B. Loumis, M. Orrit, �??Photothermal imaging of nanometer-sized metal particles among scaterrers,�?? Science 297, 1160-1163 (2002
    [CrossRef] [PubMed]
  13. A. During, M. Commandre, C. Fossati, J.Y. Natoli, J.L. Rullier, H. Bercegol, P. Bouchut, �??Development of a photothermal deflection microscope for multi-scale studies of defects,�?? in Laser-induced damage in optical materials: 2001, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau and C. J. Stolz, eds., Proc. SPIE 4932, 374-384 (2003).
    [CrossRef]
  14. A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, C. Amra, L. Escoubas, G. Albrand and M. Commander, �??Characterization of optical coatings: damage threshold/local absorption correlation,�?? in Laser-induced damage in optical materials: 1996, H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam and M.J. Soileau, eds., Proc. SPIE 2966, 292-305 (1997).
    [CrossRef]
  15. A.B. Papandrew, C.J. Stolz, Z.L. Wu, G.E. Loomis, S. Falabella, �??Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,�?? in Laser-induced damage in optical materials: 2000, G.J. Exarhos, A.H. Guenther, M.R. Kozlowski, K.L. Lewis and M.J. Soileau, eds., Proc. SPIE 4347, 53-61 (2001).
    [CrossRef]
  16. M. Reichling, A. Bodemann and N. Kaiser, �??Defect induced laser damage in oxide multilayer coatings for 248 nm,�?? Thin Solid Films 320, 264-279 (1998).
    [CrossRef]
  17. E. Welsch, H.G. Walther, D. Schafer and R. Wolf, �??Measurement of optical losses and damage resistance of ZnS-Na3/AlF6 and TiO2 laser mirrors depending on coatings design,�?? Thin Solid Films 152, 433-442 (1988).
    [CrossRef]

Appl. Opt.

J. Mod. Opt

E. Welsch and M. Reichling, �??Micrometer resolved photothermal displacement inspection of optical coatings,�?? J. Mod. Opt. 40, 1455-1475 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

M. Reichling, E. Welsch, A. Duparre and E. Matthias, �??Photothermal absorption microscopy of defects in ZrO2 and MgF2 single layer films,�?? Opt. Eng. 33, 1334-1342 (1994).
[CrossRef]

Proc. SPIE

A. During, C. Fossati and M. Commandre, �??Development of a photothermal deflection microscope for multiscale studies of defects,�?? in Laser-induced damage in optical materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau and C. J. Stolz, eds., Proc. SPIE 4679, 400-409 (2002).
[CrossRef]

M.R. Kozlowski and R. Chow, �??The role of defects in laser damage of multilayer coatings,�?? in Laser-induced damage in optical materials: 1993, H.E. Bennett, L. Chase, A.H. Guenther, B.E. Newnam and M.J. Soileau, eds. Proc. SPIE 2114, 640-649 (1994).
[CrossRef]

J. Dijon, T. Poiroux and C. Desrumaux, �??Nano absorbing centers : A key point in laser damage of thin films,�?? in Laser-induced damage in optical materials: 1996, H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam and M.J. Soileau, eds., Proc. SPIE 2966, 315-325 (1997).
[CrossRef]

A. During, M. Commandre, C. Fossati, J.Y. Natoli, J.L. Rullier, H. Bercegol, P. Bouchut, �??Development of a photothermal deflection microscope for multi-scale studies of defects,�?? in Laser-induced damage in optical materials: 2001, G. J. Exarhos, A. H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau and C. J. Stolz, eds., Proc. SPIE 4932, 374-384 (2003).
[CrossRef]

A. Fornier, C. Cordillot, D. Bernardino, O. Lam, A. Roussel, C. Amra, L. Escoubas, G. Albrand and M. Commander, �??Characterization of optical coatings: damage threshold/local absorption correlation,�?? in Laser-induced damage in optical materials: 1996, H.E. Bennett, A.H. Guenther, M.R. Kozlowski, B.E. Newnam and M.J. Soileau, eds., Proc. SPIE 2966, 292-305 (1997).
[CrossRef]

A.B. Papandrew, C.J. Stolz, Z.L. Wu, G.E. Loomis, S. Falabella, �??Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,�?? in Laser-induced damage in optical materials: 2000, G.J. Exarhos, A.H. Guenther, M.R. Kozlowski, K.L. Lewis and M.J. Soileau, eds., Proc. SPIE 4347, 53-61 (2001).
[CrossRef]

Science

D. Boyer, P. Tamarat, A. Maali, B. Loumis, M. Orrit, �??Photothermal imaging of nanometer-sized metal particles among scaterrers,�?? Science 297, 1160-1163 (2002
[CrossRef] [PubMed]

Thin Solid Films

E. Welsch, H.G. Walther, D. Schafer and R. Wolf, �??Measurement of optical losses and damage resistance of ZnS-Na3/AlF6 and TiO2 laser mirrors depending on coatings design,�?? Thin Solid Films 152, 433-442 (1988).
[CrossRef]

Other

M. Reichling, A. Bodemann and N. Kaiser, �??Defect induced laser damage in oxide multilayer coatings for 248 nm,�?? Thin Solid Films 320, 264-279 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Studied samples scheme.

Fig. 3.
Fig. 3.

Sample topography by AFM measurement.

Fig. 4.
Fig. 4.

Photothermal (top) and refraction (bottom) measurement of the same gold inclusion before shot (a.), after shot at 2 J/cm2 (b.) and after shot at 10 J/cm2 (c.), mapped area: 20 µm×20 µm.

Tables (1)

Tables Icon

Table 1. Photothermal values corresponding to Fig. 4, in arbitrary units.

Metrics