Abstract

We have developed a soft lithography method to replicate polymeric integrated optical devices. In this method, the master device and the molded replica are made of the same materials, allowing direct comparison. To evaluate the quality of the replication, microring optical resonators are chosen as test devices because of their sensitivity to small fabrication errors. The master devices are precisely fabricated using direct electron beam lithography. The replicas are produced by the molding technique and subsequent ultraviolet curing. Compared with the master devices, the molded devices show minimal change in both physical shape and optical performance. This correspondence indicates the merits of soft lithographic methods for fabrication of precision integrated optical devices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Eldada, and L. W. Shacklette, �??Advances in polymer integrated optics,�?? IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
    [CrossRef]
  2. H. Ma, A. K.-Y. Jen, and L. R. Dalton, �??Polymer-based optical waveguides: materials, processing, and devices,�?? Adv. Mater. 14, 1339-1365 (2002).
    [CrossRef]
  3. A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  4. A. Yariv, �??Critical coupling and its control in optical waveguide-ring resonator systems,�?? IEEE Photonics Technol. Lett. 14, 483-485 (2002).
    [CrossRef]
  5. J. M. Choi, R. K. Lee, and A. Yariv, �??Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective seitching, modulation, amplification, and oscillation,�?? Opt. Lett. 26, 1236-1238 (2001).
    [CrossRef]
  6. J. M. Choi, R. K. Lee, and A. Yariv, �??Ring fiber resonators based on fused-fiber grating add-drop filters: application to resonator coupling" Opt. Lett. 27, 1598-1600 (2002).
    [CrossRef]
  7. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, �??Polymer micro- ng filters and modulators,�?? J. Lightwave Technol. 20, 1968-1975 (2002).
    [CrossRef]
  8. C. Chao, and L. J. Guo, �??Polymer microring resonators fabricated by nanoimprint technique,�?? J. Vac. Sci. Technol B 20, 1862-2866 (2002).
    [CrossRef]
  9. X. M. Zhao, Y. Xia, and G. M. Whitesides, �??Soft lighographic methods for nano-fabrication,�?? J. Mater. Chem. 7, 1069-1074 (1997)
    [CrossRef]
  10. Y. Xia and G. M. Whitesides, �??Soft lithography,�?? Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    [CrossRef]
  11. Y. Xia and G. M. Whitesides, �??Soft lithography,�?? Angew. Chem. Int. Ed. 37, 550-575 (1998).
    [CrossRef]
  12. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, �??Unconventional methods for fabricating and patterning nanostructures,�?? Chem. Rev. 99, 1823-1848 (1999).
    [CrossRef]
  13. S. R. Quake, and A. Scherer, �??From micro- to nanofabrication with soft materials,�?? Science 290, 1536-1540 (2000).
    [CrossRef] [PubMed]
  14. J. A. Rogers, M. Meier, and A. Dodabalapur, �??Using printing and molding techniques to produce distributed feedback and Bragg reflector resonatiors for plastic lasers,�?? Appl. Phys. Lett. 73, 1766-1768 (1998).
    [CrossRef]
  15. J. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, �??Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplaner substrates,�?? Appl. Phys. Lett. 74, 3257-3259 (1999).
    [CrossRef]
  16. N. Suganuma, A. Seki, Y. Tanaka, M. Ichikawa, T. Koyama, and Y. Taniguchi, �??Organic polymer DBR laser by softlithography,�?? J. Photopoly. Sci. Tech. 15, 273-278 (2002).
    [CrossRef]
  17. D. Pisignano, M. Anni, G. Gigli, R. Cingolani, G. Barbarella, L. Favaretto, and G. Sotgiu, �??Flexible organic distributed feedback structures by soft lithography,�?? Synth. Metals 137, 1057-1058 (2003).
    [CrossRef]
  18. O. J. A. Schueller, G. M. Whitesides, J. A. Rogers, M. Meier, and A. Dodabalapur, �??Fabrication of photonic crystal lasers by nanomolding of solgel glasses,�?? Appl. Opt. 38, 5799-5802 (1999).
    [CrossRef]
  19. M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel, and O. Nalamasu, �??Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding,�?? J. Appl. Phys. 86, 3502-3507 (1999).
    [CrossRef]
  20. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, �??Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,�?? Appl. Phys. Lett. 82, 1152-1154 (2003).
    [CrossRef]
  21. X. M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, �??Demonstration of waveguide couplers fabricated using microtransfer molding,�?? Appl. Phys. Lett. 71, 1017-1019 (1997).
    [CrossRef]
  22. R. Horvath, L. R. Lindvold, and N. B. Larsen, �??Fabrication of all-polymer freestanding waveguides,�?? J. Micromech. Microeng. 13, 419-424 (2003).
    [CrossRef]

Adv. Mater.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, �??Polymer-based optical waveguides: materials, processing, and devices,�?? Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Angew. Chem. Int. Ed.

Y. Xia and G. M. Whitesides, �??Soft lithography,�?? Angew. Chem. Int. Ed. 37, 550-575 (1998).
[CrossRef]

Annu. Rev. Mater. Sci.

Y. Xia and G. M. Whitesides, �??Soft lithography,�?? Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, �??Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,�?? Appl. Phys. Lett. 82, 1152-1154 (2003).
[CrossRef]

X. M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, �??Demonstration of waveguide couplers fabricated using microtransfer molding,�?? Appl. Phys. Lett. 71, 1017-1019 (1997).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, �??Using printing and molding techniques to produce distributed feedback and Bragg reflector resonatiors for plastic lasers,�?? Appl. Phys. Lett. 73, 1766-1768 (1998).
[CrossRef]

J. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, �??Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplaner substrates,�?? Appl. Phys. Lett. 74, 3257-3259 (1999).
[CrossRef]

Chem. Rev.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, �??Unconventional methods for fabricating and patterning nanostructures,�?? Chem. Rev. 99, 1823-1848 (1999).
[CrossRef]

Electron. Lett.

A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Eldada, and L. W. Shacklette, �??Advances in polymer integrated optics,�?? IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000).
[CrossRef]

IEEE Photonics Technol. Lett.

A. Yariv, �??Critical coupling and its control in optical waveguide-ring resonator systems,�?? IEEE Photonics Technol. Lett. 14, 483-485 (2002).
[CrossRef]

J. Appl. Phys.

M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel, and O. Nalamasu, �??Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding,�?? J. Appl. Phys. 86, 3502-3507 (1999).
[CrossRef]

J. Lightwave Technol.

J. Mater. Chem.

X. M. Zhao, Y. Xia, and G. M. Whitesides, �??Soft lighographic methods for nano-fabrication,�?? J. Mater. Chem. 7, 1069-1074 (1997)
[CrossRef]

J. Micromech. Microeng.

R. Horvath, L. R. Lindvold, and N. B. Larsen, �??Fabrication of all-polymer freestanding waveguides,�?? J. Micromech. Microeng. 13, 419-424 (2003).
[CrossRef]

J. Photopoly. Sci. Tech.

N. Suganuma, A. Seki, Y. Tanaka, M. Ichikawa, T. Koyama, and Y. Taniguchi, �??Organic polymer DBR laser by softlithography,�?? J. Photopoly. Sci. Tech. 15, 273-278 (2002).
[CrossRef]

J. Vac. Sci. Technol B

C. Chao, and L. J. Guo, �??Polymer microring resonators fabricated by nanoimprint technique,�?? J. Vac. Sci. Technol B 20, 1862-2866 (2002).
[CrossRef]

Opt. Lett.

Science

S. R. Quake, and A. Scherer, �??From micro- to nanofabrication with soft materials,�?? Science 290, 1536-1540 (2000).
[CrossRef] [PubMed]

Synth. Metals

D. Pisignano, M. Anni, G. Gigli, R. Cingolani, G. Barbarella, L. Favaretto, and G. Sotgiu, �??Flexible organic distributed feedback structures by soft lithography,�?? Synth. Metals 137, 1057-1058 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of fabrication processes. Generally, the UV curable polymer can be either the same material used for electron beam lithography or different ones.

Fig. 2.
Fig. 2.

Optical setup for transmission measurement.

Fig. 3.
Fig. 3.

Optical microscope image of microring optical resonator fabricated by soft lithography. The inset shows the detail of coupling region. The ring diameter is 200 µm, the waveguide width is 2µm, and the gap between the straight waveguide and the microring is 250 nm. Light from a He-Ne laser is input into the device for illustration only.

Fig. 4.
Fig. 4.

Schematic geometry for waveguide ring resonator coupling. The color plot is a finite-difference time-domain simulation of the coupling between the straight waveguide and the ring.

Fig. 5.
Fig. 5.

Comparison between the transmission spectra of master microring resonator optical filter and molded one.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ b 1 b 2 ] = [ t κ κ * t * ] [ a 1 a 2 ] ,
t 2 + κ 2 = 1 .
b 1 a 1 2 = α 2 + t 2 2 α t cos θ 1 + α 2 t 2 2 α t cos θ .
b 1 a 1 2 = ( α t ) 2 ( 1 α t ) 2 .

Metrics