Abstract

Air-silica fiber 125µm in diameter has been tapered down to ~15µm. At this diameter, it is commonly assumed that the nanostructured fiber holes have collapsed. Using an Atomic Force Microscope, we show this assumption to be in error, and demonstrate for the first time that structures several hundred nanometers in diameter are present, and that hole array structures are maintained. The use of Atomic Force Microscopy is shown to be an efficient way of characterising these structures.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech.,  12, 1517–1523 (1994)
    [CrossRef]
  2. S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
    [CrossRef]
  3. Mou-Tion Lee, “Reaction of High-Silica optical fibers with hydrofluoric acid,” J. Am. Cer. Soc.,  67, C-21–22 (1984).
    [CrossRef]
  4. S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
    [CrossRef]
  5. J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
    [CrossRef]
  6. J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Accepted to Opt. Lett. (2002).
  7. S.T. Huntington, Private communication and subsequent measurements to T.M. Monro, 2nd March, 2001, on the use of AFM for Holey Fiber profiling.
  8. C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
    [CrossRef]
  9. A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
    [CrossRef]
  10. L. Kaiser and H.W. Astle, “Low-loss single material fibers made from pure fused silica,” Bell System Tech. J. 53, 1021–1039 (1974)
  11. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, “All-silica single mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996)
    [CrossRef] [PubMed]
  12. R.P. Kenny, T.A. Birks, and K.P. Oakley, “Control of optical fiber taper shape,” Elec. Lett. 27, 1654–1656 (1991)
    [CrossRef]
  13. G.E. Town and J.T. Lizier, “Tapered holey fibers for spot size and numerical aperture conversion,” Opt. Lett. 26, 1042–1044 (2001)
    [CrossRef]
  14. T.A. Birks, W.J. Wadsworth, and P.St.J. Russell, “Supercontinuum generation in tapered holey fibers,” Opt. Lett. 25, 1415–1417 (2000)
    [CrossRef]
  15. K. Lyytikainen, “Numerical simulation of a specialty optical fiber drawing process,” Proceedings of Australian Conference on Optical Fiber Technology (ACOFT 2002), Darling Harbour Sydney, Australia, (2002)
  16. K. Lyytikainen, J. Zagari, G. Barton, and J. Canning, “Heat transfer in a microstructured polymer optical fiber preform,” 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (2002)

2001 (2)

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

G.E. Town and J.T. Lizier, “Tapered holey fibers for spot size and numerical aperture conversion,” Opt. Lett. 26, 1042–1044 (2001)
[CrossRef]

2000 (2)

T.A. Birks, W.J. Wadsworth, and P.St.J. Russell, “Supercontinuum generation in tapered holey fibers,” Opt. Lett. 25, 1415–1417 (2000)
[CrossRef]

S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
[CrossRef]

1999 (1)

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

1997 (1)

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

1996 (1)

1994 (1)

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech.,  12, 1517–1523 (1994)
[CrossRef]

1991 (1)

R.P. Kenny, T.A. Birks, and K.P. Oakley, “Control of optical fiber taper shape,” Elec. Lett. 27, 1654–1656 (1991)
[CrossRef]

1986 (1)

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
[CrossRef]

1984 (1)

Mou-Tion Lee, “Reaction of High-Silica optical fibers with hydrofluoric acid,” J. Am. Cer. Soc.,  67, C-21–22 (1984).
[CrossRef]

1974 (1)

L. Kaiser and H.W. Astle, “Low-loss single material fibers made from pure fused silica,” Bell System Tech. J. 53, 1021–1039 (1974)

Ashby, S.

S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
[CrossRef]

Astle, H.W.

L. Kaiser and H.W. Astle, “Low-loss single material fibers made from pure fused silica,” Bell System Tech. J. 53, 1021–1039 (1974)

Atkin, D.M.

Barbeito, P.M.

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

Barkou, S.E.

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

Barton, G.

K. Lyytikainen, J. Zagari, G. Barton, and J. Canning, “Heat transfer in a microstructured polymer optical fiber preform,” 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (2002)

Bazylenko, M.

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

Belardi, W.

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

Betzig, E.

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
[CrossRef]

Birks, T.A.

Bjarklev, A.

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

Brocklesby, W.S.

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

Broeng, J.

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

Buckley, E.

J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Accepted to Opt. Lett. (2002).

Canning, J.

J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Accepted to Opt. Lett. (2002).

K. Lyytikainen, J. Zagari, G. Barton, and J. Canning, “Heat transfer in a microstructured polymer optical fiber preform,” 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (2002)

Elias, M.

S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
[CrossRef]

Harootunian, A.

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
[CrossRef]

Hillman, C.W.J.

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

Huntington, S. T.

S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
[CrossRef]

Huntington, S.T.

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

S.T. Huntington, Private communication and subsequent measurements to T.M. Monro, 2nd March, 2001, on the use of AFM for Holey Fiber profiling.

Inniss, D.

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech.,  12, 1517–1523 (1994)
[CrossRef]

Isaacson, M.

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
[CrossRef]

Kaiser, L.

L. Kaiser and H.W. Astle, “Low-loss single material fibers made from pure fused silica,” Bell System Tech. J. 53, 1021–1039 (1974)

Kenny, R.P.

R.P. Kenny, T.A. Birks, and K.P. Oakley, “Control of optical fiber taper shape,” Elec. Lett. 27, 1654–1656 (1991)
[CrossRef]

Knight, J.C.

Lee, Mou-Tion

Mou-Tion Lee, “Reaction of High-Silica optical fibers with hydrofluoric acid,” J. Am. Cer. Soc.,  67, C-21–22 (1984).
[CrossRef]

Lewis, A.

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
[CrossRef]

Lizier, J.T.

Love, J. D.

S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
[CrossRef]

Lyytikainen, K.

J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Accepted to Opt. Lett. (2002).

K. Lyytikainen, “Numerical simulation of a specialty optical fiber drawing process,” Proceedings of Australian Conference on Optical Fiber Technology (ACOFT 2002), Darling Harbour Sydney, Australia, (2002)

K. Lyytikainen, J. Zagari, G. Barton, and J. Canning, “Heat transfer in a microstructured polymer optical fiber preform,” 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (2002)

Monro, T.M.

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

Mulvaney, P.

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

Nugent, K.A.

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

Oakley, K.P.

R.P. Kenny, T.A. Birks, and K.P. Oakley, “Control of optical fiber taper shape,” Elec. Lett. 27, 1654–1656 (1991)
[CrossRef]

Richardson, D.J.

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

Roberts, A.

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

Russell, P.St.J.

Sondegaard, T.

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

Town, G.E.

Wadsworth, W.J.

Zagari, J.

K. Lyytikainen, J. Zagari, G. Barton, and J. Canning, “Heat transfer in a microstructured polymer optical fiber preform,” 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (2002)

Zhong, Q.

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech.,  12, 1517–1523 (1994)
[CrossRef]

Appl. Phys. Lett. (1)

A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, “Super-resolution fluorescence near-field scanning optical microscopy,” Appl. Phys. Lett. 49, 674–676 (1986)
[CrossRef]

Bell System Tech. J. (1)

L. Kaiser and H.W. Astle, “Low-loss single material fibers made from pure fused silica,” Bell System Tech. J. 53, 1021–1039 (1974)

Elec. Lett. (2)

R.P. Kenny, T.A. Birks, and K.P. Oakley, “Control of optical fiber taper shape,” Elec. Lett. 27, 1654–1656 (1991)
[CrossRef]

S. T. Huntington, S. Ashby, J. D. Love, and M. Elias, “Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,” Elec. Lett.,  36, 121–122 (2000).
[CrossRef]

Elec.Lett. (1)

C.W.J. Hillman, W.S. Brocklesby, T.M. Monro, W. Belardi, and D.J. Richardson, “Structural and optical characterisation of holey fibers using scanning probe microscopy,” Elec.Lett. 37, 1283–1284 (2001)
[CrossRef]

J. Am. Cer. Soc. (1)

Mou-Tion Lee, “Reaction of High-Silica optical fibers with hydrofluoric acid,” J. Am. Cer. Soc.,  67, C-21–22 (1984).
[CrossRef]

J. Appl. Phys. (1)

S.T. Huntington, P. Mulvaney, A. Roberts, K.A. Nugent, and M. Bazylenko, “Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,” J. Appl. Phys. 82, 2730–2734 (1997)
[CrossRef]

J. Lightwave. Tech. (1)

Q. Zhong and D. Inniss, “Characterisation of lightguiding structure of optical fibers by atomic force microscopy,” J. Lightwave. Tech.,  12, 1517–1523 (1994)
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, and A. Bjarklev, “Wave guidance by the photonic bandgap effect in optical fibers,” J. Opt. A: Pure Appl. Opt. 1, 477–482 (1999)
[CrossRef]

Opt. Lett. (3)

Other (4)

K. Lyytikainen, “Numerical simulation of a specialty optical fiber drawing process,” Proceedings of Australian Conference on Optical Fiber Technology (ACOFT 2002), Darling Harbour Sydney, Australia, (2002)

K. Lyytikainen, J. Zagari, G. Barton, and J. Canning, “Heat transfer in a microstructured polymer optical fiber preform,” 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (2002)

J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Accepted to Opt. Lett. (2002).

S.T. Huntington, Private communication and subsequent measurements to T.M. Monro, 2nd March, 2001, on the use of AFM for Holey Fiber profiling.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of optical fiber tapering rig.

Fig. 2.
Fig. 2.

AFM contact mode image of a 125µm air-silica structured fiber. Scan size = 60µm

Fig. 3.
Fig. 3.

AFM contact mode image of a nano-size spike clearly showing the self-imaging of the pyramidal tip. Scan size = 1.5µm

Fig. 4.
Fig. 4.

Hexagonal overlay showing fiber hole arrangement and distances used for inter-hole spacing measurements.

Fig. 5.
Fig. 5.

AFM contact mode image of a cleaved tapered air-silica structured fiber. Scan size = 5µm

Fig. 6.
Fig. 6.

Hexagonal overlay showing fiber taper hole arrangement and distances used for inter-hole spacing measurements.

Metrics