Abstract

Air-silica fiber 125µm in diameter has been tapered down to ~15µm. At this diameter, it is commonly assumed that the nanostructured fiber holes have collapsed. Using an Atomic Force Microscope, we show this assumption to be in error, and demonstrate for the first time that structures several hundred nanometers in diameter are present, and that hole array structures are maintained. The use of Atomic Force Microscopy is shown to be an efficient way of characterising these structures.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Q. Zhong and D. Inniss, �??Characterisation of lightguiding structure of optical fibers by atomic force microscopy,�?? J. Lightwave. Tech. 12, 1517-1523 (1994).
    [CrossRef]
  2. S.T.Huntington, P. Mulvaney, A. Roberts, K.A. Nugent and M. Bazylenko, �??Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,�?? J. Appl. Phys. 82, 2730-2734 (1997).
    [CrossRef]
  3. Mou-Tion Lee, �??Reaction of High-Silica optical fibers with hydrofluoric acid,�?? J. Am. Cer. Soc. 67, C-21-22 (1984).
    [CrossRef]
  4. S. T. Huntington, S. Ashby, J. D. Love and M. Elias, "Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,�?? Electron. Lett. 36, 121-122 (2000).
    [CrossRef]
  5. J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, A. Bjarklev, �??Wave guidance by the photonic bandgap effect in optical fibers,�?? J. Opt. A: Pure Appl. Opt. 1, 477-482 (1999).
    [CrossRef]
  6. J. Canning, E. Buckley, K. Lyytikainen, �??Propagation in air by field superposition of scattered light within a Fresnel fiber,�?? Accepted to Opt. Lett. (2002).
  7. S.T.Huntington, Private communication and subsequent measurements to T.M. Monro, 2nd March, 2001, on the use of AFM for Holey Fiber profiling.
  8. C.W.J.Hillman, W.S.Brocklesby, T.M.Monro, W.Belardi and D.J.Richardson, �??Structural and optical characterisation of holey fibers using scanning probe microscopy,�?? Electron. Lett. 37, 1283-1284 (2001).
    [CrossRef]
  9. A.Harootunian, E.Betzig, M.Isaacson and A.Lewis, "Super-resolution fluorescence near-field scanning optical microscopy," Appl. Phys. Lett. 49, 674-676 (1986).
    [CrossRef]
  10. L. Kaiser, H.W. Astle, �??Low-loss single material fibers made from pure fused silica,�?? Bell System Tech. J. 53, 1021-1039 (1974).
  11. J.C.Knight, T.A.Birks, P.St.J.Russell and D.M.Atkin, �??All-silica single mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  12. R.P. Kenny, T.A. Birks and K.P. Oakley, �??Control of optical fiber taper shape,�?? Electron. Lett. 27, 1654-1656 (1991).
    [CrossRef]
  13. G.E.Town and J.T.Lizier, �??Tapered holey fibers for spot size and numerical aperture conversion,�?? Opt. Lett. 26, 1042-1044 (2001).
    [CrossRef]
  14. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered holey fibers,�?? Opt. Lett. 25, 1415-1417 (2000)
    [CrossRef]
  15. K. Lyytikainen, �??Numerical simulation of a specialty optical fiber drawing process,�?? Proceedings of Australian Conference on Optical Fiber Technology (ACOFT 2002), Darling Harbour Sydney, Australia, (2002)
  16. K. Lyytikainen, J. Zagari, G. Barton, J. Canning, �??Heat transfer in a microstructured polymer optical fiber preform,�?? 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (200

Appl. Phys. Lett.

A.Harootunian, E.Betzig, M.Isaacson and A.Lewis, "Super-resolution fluorescence near-field scanning optical microscopy," Appl. Phys. Lett. 49, 674-676 (1986).
[CrossRef]

Bell System Tech. J.

L. Kaiser, H.W. Astle, �??Low-loss single material fibers made from pure fused silica,�?? Bell System Tech. J. 53, 1021-1039 (1974).

Electron. Lett.

R.P. Kenny, T.A. Birks and K.P. Oakley, �??Control of optical fiber taper shape,�?? Electron. Lett. 27, 1654-1656 (1991).
[CrossRef]

S. T. Huntington, S. Ashby, J. D. Love and M. Elias, "Direct measurement of core profile diffusion and ellipticity in fused-taper fiber couplers using atomic force microscopy,�?? Electron. Lett. 36, 121-122 (2000).
[CrossRef]

C.W.J.Hillman, W.S.Brocklesby, T.M.Monro, W.Belardi and D.J.Richardson, �??Structural and optical characterisation of holey fibers using scanning probe microscopy,�?? Electron. Lett. 37, 1283-1284 (2001).
[CrossRef]

J. Am. Cer. Soc.

Mou-Tion Lee, �??Reaction of High-Silica optical fibers with hydrofluoric acid,�?? J. Am. Cer. Soc. 67, C-21-22 (1984).
[CrossRef]

J. Appl. Phys.

S.T.Huntington, P. Mulvaney, A. Roberts, K.A. Nugent and M. Bazylenko, �??Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A Quantitative study,�?? J. Appl. Phys. 82, 2730-2734 (1997).
[CrossRef]

J. Lightwave. Tech.

Q. Zhong and D. Inniss, �??Characterisation of lightguiding structure of optical fibers by atomic force microscopy,�?? J. Lightwave. Tech. 12, 1517-1523 (1994).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

J. Broeng, T. Sondegaard, S.E. Barkou, P.M. Barbeito, A. Bjarklev, �??Wave guidance by the photonic bandgap effect in optical fibers,�?? J. Opt. A: Pure Appl. Opt. 1, 477-482 (1999).
[CrossRef]

Opt. Lett.

Other

K. Lyytikainen, �??Numerical simulation of a specialty optical fiber drawing process,�?? Proceedings of Australian Conference on Optical Fiber Technology (ACOFT 2002), Darling Harbour Sydney, Australia, (2002)

K. Lyytikainen, J. Zagari, G. Barton, J. Canning, �??Heat transfer in a microstructured polymer optical fiber preform,�?? 11th International Plastic Optical Fibers Conference, Tokyo, Japan, paper E-4, (200

S.T.Huntington, Private communication and subsequent measurements to T.M. Monro, 2nd March, 2001, on the use of AFM for Holey Fiber profiling.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of optical fiber tapering rig.

Fig. 2.
Fig. 2.

AFM contact mode image of a 125µm air-silica structured fiber. Scan size = 60µm

Fig. 3.
Fig. 3.

AFM contact mode image of a nano-size spike clearly showing the self-imaging of the pyramidal tip. Scan size = 1.5µm

Fig. 4.
Fig. 4.

Hexagonal overlay showing fiber hole arrangement and distances used for inter-hole spacing measurements.

Fig. 5.
Fig. 5.

AFM contact mode image of a cleaved tapered air-silica structured fiber. Scan size = 5µm

Fig. 6.
Fig. 6.

Hexagonal overlay showing fiber taper hole arrangement and distances used for inter-hole spacing measurements.

Metrics