Abstract

In this paper we evaluate the temporal evolution, after exposure, of a diffraction grating stored in a PVA/acrylamide photopolymer. We also study the overmodulation of the refractive index inside the hologram, which gives rise to a particular behaviour of the angular response of diffraction efficiency. This evolution takes place in our photopolymer due to the incorporation of dimethylacrylamide (DMAA), which is a liquid at room temperature and so favours diffusion of the species in solution from the zones of greater concentration to those of lower concentration.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
First-harmonic diffusion-based model applied to a polyvinyl-alcohol– acrylamide-based photopolymer

Cristian Neipp, Sergi Gallego, Manuel Ortuño, Andrés Márquez, Mariela L. Alvarez, Augusto Beléndez, and Inmaculada Pascual
J. Opt. Soc. Am. B 20(10) 2052-2060 (2003)

Diffusion-based model to predict the conservation of gratings recorded in poly(vinyl alcohol)–acrylamide photopolymer

Sergi Gallego, Cristian Neipp, Manuel Ortuño, Andrés Márquez, Augusto Beléndez, and Inmaculada Pascual
Appl. Opt. 42(29) 5839-5845 (2003)

Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model

John V. Kelly, Michael R. Gleeson, Ciara E. Close, Feidhlim T. O’ Neill, John T. Sheridan, Sergi Gallego, and Cristian Neipp
Opt. Express 13(18) 6990-7004 (2005)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard and G. Manivannan, eds., Selected Papers on Photopolymers, MS 114, (SPIE Optical Engineering Press, Belligham1996).
  2. D. J. Lougnot, “Self-processing photopolymer materials for holographic recording,” in Polymers in Optics: Physics, Chemistry, and Applications, R. A. Lessard and W. F. Frank, eds., Crit. Rev. Opt. Sci. Technol., Proc. SPIECR63, 190–213 (1996).
  3. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic data storage (Springer-Verlag, Berlin2000), p 171.
  4. S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
    [Crossref]
  5. V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. H. Trout, ed., Proc. SPIE2688, 11–21 (1996).
    [Crossref]
  6. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, M. Ulibarrena, and D. Levy, “Optimization of an acrylamide-based dry film used for holographic recording,” Appl. Opt. 37, 7604–7610 (1998).
    [Crossref]
  7. C. García, A. Fimia, and I. Pascual, “Diffraction efficiency and signal-to-noise ratio of diffuse-object holograms in real time in polyvinyl alcohol photopolymers,” Appl. Opt. 38, 5548–5551 (1999).
    [Crossref]
  8. C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: Mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
    [Crossref]
  9. C. García, I. Pascual, A. Costela, I. García-Moreno, C. Gómez, A. Fimia, and R. Sastre, “Hologram recording in polyvinyl alcohol/acrylamide photopolymers by means of pulsed laser exposure,” Appl. Opt. 41, 2613–2620 (2002).
    [Crossref] [PubMed]
  10. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, London1981), p. 79.
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).
  12. C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A 3, 504–5513 (2001).
    [Crossref]
  13. C. Neipp, C. Pascual, and A. Beléndez, “Mixed phase-amplitude holographic gratings recorden in bleached silver halide materials,” J. Phys. D 35, 957–67 (2002).
    [Crossref]
  14. C. Neipp, I. Pascual, and A. Beléndez, “Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms,” Opt. Express 10, 1374–1383 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374.
    [Crossref] [PubMed]

2002 (3)

2001 (2)

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: Mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
[Crossref]

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A 3, 504–5513 (2001).
[Crossref]

1999 (1)

1998 (1)

1994 (1)

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).

Beléndez, A.

C. Neipp, C. Pascual, and A. Beléndez, “Mixed phase-amplitude holographic gratings recorden in bleached silver halide materials,” J. Phys. D 35, 957–67 (2002).
[Crossref]

C. Neipp, I. Pascual, and A. Beléndez, “Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms,” Opt. Express 10, 1374–1383 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374.
[Crossref] [PubMed]

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A 3, 504–5513 (2001).
[Crossref]

Blaya, S.

Carretero, L.

Cooke, D. J.

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, London1981), p. 79.

Costela, A.

Fimia, A.

Friesem, A. A.

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. H. Trout, ed., Proc. SPIE2688, 11–21 (1996).
[Crossref]

García, C.

García-Moreno, I.

Gómez, C.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).

Leclere, P. E.

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

Levy, D.

Lion, Y. F.

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

Lougnot, D. J.

D. J. Lougnot, “Self-processing photopolymer materials for holographic recording,” in Polymers in Optics: Physics, Chemistry, and Applications, R. A. Lessard and W. F. Frank, eds., Crit. Rev. Opt. Sci. Technol., Proc. SPIECR63, 190–213 (1996).

Mallavia, R.

Martin, S.

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

Millul, E.

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. H. Trout, ed., Proc. SPIE2688, 11–21 (1996).
[Crossref]

Neipp, C.

C. Neipp, C. Pascual, and A. Beléndez, “Mixed phase-amplitude holographic gratings recorden in bleached silver halide materials,” J. Phys. D 35, 957–67 (2002).
[Crossref]

C. Neipp, I. Pascual, and A. Beléndez, “Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms,” Opt. Express 10, 1374–1383 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1374.
[Crossref] [PubMed]

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A 3, 504–5513 (2001).
[Crossref]

Pascual, C.

C. Neipp, C. Pascual, and A. Beléndez, “Mixed phase-amplitude holographic gratings recorden in bleached silver halide materials,” J. Phys. D 35, 957–67 (2002).
[Crossref]

Pascual, I.

Renotte, Y. L.

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

Sastre, R.

Solymar, L.

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, London1981), p. 79.

Toal, V.

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

Ulibarrena, M.

Weiss, V.

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. H. Trout, ed., Proc. SPIE2688, 11–21 (1996).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: Mechanism of polymerization,” Appl. Phys. B 72, 311–316 (2001).
[Crossref]

Bell Sys. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48, 2909–2947 (1969).

J. Opt. A (1)

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A 3, 504–5513 (2001).
[Crossref]

J. Phys. D (1)

C. Neipp, C. Pascual, and A. Beléndez, “Mixed phase-amplitude holographic gratings recorden in bleached silver halide materials,” J. Phys. D 35, 957–67 (2002).
[Crossref]

Opt. Eng. (1)

S. Martin, P. E. Leclere, Y. L. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[Crossref]

Opt. Express (1)

Other (5)

V. Weiss, E. Millul, and A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. H. Trout, ed., Proc. SPIE2688, 11–21 (1996).
[Crossref]

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, London1981), p. 79.

R. A. Lessard and G. Manivannan, eds., Selected Papers on Photopolymers, MS 114, (SPIE Optical Engineering Press, Belligham1996).

D. J. Lougnot, “Self-processing photopolymer materials for holographic recording,” in Polymers in Optics: Physics, Chemistry, and Applications, R. A. Lessard and W. F. Frank, eds., Crit. Rev. Opt. Sci. Technol., Proc. SPIECR63, 190–213 (1996).

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic data storage (Springer-Verlag, Berlin2000), p 171.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental set-up.

Fig. 2.
Fig. 2.

Diffraction efficiency (DE) as a function of exposure in the Bragg angle.

Fig. 3.
Fig. 3.

Diffraction efficiency (DE) and transmission efficiency (TE) as a function of the angle at reconstruction at point 1 in Fig. 2, immediately after exposure (Δn = 0.00678).

Fig. 4.
Fig. 4.

Diffraction efficiency (DE) and transmission efficiency (TE) as a function of the angle at reconstruction at point 2 in Fig. 2, 11/2 hours after the grating isrecorded (Δn = 0.00503).

Fig. 5.
Fig. 5.

Diffraction efficiency (DE) and transmission efficiency (TE) as a function of the angle at reconstruction at point 3 in Fig. 2, 3 hours after the grating is recorded (Δn = 0.00442).

Fig. 6.
Fig. 6.

Diffraction efficiency (DE) and transmission efficiency (TE) as a function of the angle at reconstruction at point 4 in Fig. 2, 24 hours after the grating is recorded (Δn = 0.00227).

Fig. 7.
Fig. 7.

Diffraction efficiency (DE) and transmission efficiency (TE) as a function of the angle at reconstruction at point 5 in Fig. 2, 48 hours after the grating is recorded (Δn = 0.001763).

Fig. 8.
Fig. 8.

Diffraction efficiency (DE) and transmission efficiency (TE) as a function of the angle at reconstruction at point 6 in Fig. 2, 96 hours after the grating is recorded (Δn = 0.00118).

Fig. 9.
Fig. 9.

Fraction of refractive index modulation remained as function of time after the hologram was recorded. For films with DMAA.

Fig. 10.
Fig. 10.

Fraction of refractive index modulation remained as function of time after the hologram was recorded. For films without DMAA.

Tables (1)

Tables Icon

Table 1. Components of the photopolymerizable solution.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R ( d ) = exp ( j ξ α d 2 cos θ ) [ cos ϕ + j ( ξ ϕ ) sin ϕ ]
S ( d ) = j exp ( j ξ α d 2 cos θ ) sin ϕ ϕ ν
ϕ = ν 2 + ξ 2
ν = πΔ nd λ cos θ
ξ = d ϑ 2 cos θ
ϑ = β 2 σ 2 2 β
η = exp ( αd cos θ ' ) sin 2 ( ν 2 + ξ 2 ) 1 2 1 + ( ξ 2 ν 2 )
η = exp ( αd cos θ ' ) sin 2 ν

Metrics