Abstract

A simple implementation of plane wave method is presented for modeling photonic crystals with arbitrary shaped ‘atoms’. The Fourier transform for a single ‘atom’ is first calculated either by analytical Fourier transform or numerical FFT, then the shift property is used to obtain the Fourier transform for any arbitrary supercell consisting of a finite number of ‘atoms’. To ensure accurate results, generally, two iterating processes including the plane wave iteration and grid resolution iteration must converge. Analysis shows that using analytical Fourier transform when available can improve accuracy and avoid the grid resolution iteration. It converges to the accurate results quickly using a small number of plane waves. Coordinate conversion is used to treat non-orthogonal unit cell with non-regular ‘atom’ and then is treated by standard numerical FFT. MATLAB source code for the implementation requires about less than 150 statements, and is freely available at http://www.lions.odu.edu/~sguox002.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic band gap analysis using finite-difference frequency-domain method

Shangping Guo, Feng Wu, Sacharia Albin, and Robert S. Rogowski
Opt. Express 12(8) 1741-1746 (2004)

Computing Photonic Crystal Defect Modes by Dirichlet-to-Neumann Maps

Shaojie Li and Ya Yan Lu
Opt. Express 15(22) 14454-14466 (2007)

The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities

Imanol Andonegui and Angel J. Garcia-Adeva
Opt. Express 21(4) 4072-4092 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson and J. D. Joannopoulos, “Block iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
    [Crossref] [PubMed]
  2. K. M. Leung, “Plane wave calculation of photonic band structures” in Photonic band gaps and localizations, C. M. Soukoulis. ed. (Plenum Press NY1993).
  3. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [Crossref] [PubMed]
  4. R. D. Meade and A. M. Rappe et a1., “Accurate theoretical analysis of photonic band gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
    [Crossref]
  5. K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in FCC dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
    [Crossref] [PubMed]
  6. D. C. Champeney, Fourier transforms and their physical applications (Academic Press, 1973) Chap. 3.
  7. Geoge Arfken, Mathematical methods for physicists, 3rd edition, (Academic Press, 1985), Chap. 2.
  8. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996)
    [Crossref]
  9. D. Hermann et al., “Photonic band structure computations,” Opt. Express 8, 167–172 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-167
    [Crossref] [PubMed]
  10. J. D. Joannopoulos et al., Photonic crystals - Molding the flow of light (Princeton University Press1995).
  11. P. R. Villeneuve and S. Fan et al., “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

2001 (2)

1996 (2)

P. R. Villeneuve and S. Fan et al., “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996)
[Crossref]

1993 (1)

R. D. Meade and A. M. Rappe et a1., “Accurate theoretical analysis of photonic band gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

1990 (2)

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in FCC dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Arfken, Geoge

Geoge Arfken, Mathematical methods for physicists, 3rd edition, (Academic Press, 1985), Chap. 2.

Champeney, D. C.

D. C. Champeney, Fourier transforms and their physical applications (Academic Press, 1973) Chap. 3.

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Fan, S.

P. R. Villeneuve and S. Fan et al., “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

Hermann, D.

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Leung, K. M.

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in FCC dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

K. M. Leung, “Plane wave calculation of photonic band structures” in Photonic band gaps and localizations, C. M. Soukoulis. ed. (Plenum Press NY1993).

Liu, Y. F.

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in FCC dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

Meade, R. D.

R. D. Meade and A. M. Rappe et a1., “Accurate theoretical analysis of photonic band gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Pendry, J. B.

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996)
[Crossref]

Rappe, A. M.

R. D. Meade and A. M. Rappe et a1., “Accurate theoretical analysis of photonic band gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Villeneuve, P. R.

P. R. Villeneuve and S. Fan et al., “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

Ward, A. J.

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996)
[Crossref]

J. Mod. Opt. (1)

A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996)
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

P. R. Villeneuve and S. Fan et al., “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).

Phys. Rev. B (1)

R. D. Meade and A. M. Rappe et a1., “Accurate theoretical analysis of photonic band gap materials,” Phys. Rev. B 48, 8434–8437 (1993).
[Crossref]

Phys. Rev. Lett. (2)

K. M. Leung and Y. F. Liu, “Full vector wave calculation of photonic band structures in FCC dielectric media,” Phys. Rev. Lett. 65, 2646–2649 (1990).
[Crossref] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[Crossref] [PubMed]

Other (4)

D. C. Champeney, Fourier transforms and their physical applications (Academic Press, 1973) Chap. 3.

Geoge Arfken, Mathematical methods for physicists, 3rd edition, (Academic Press, 1985), Chap. 2.

K. M. Leung, “Plane wave calculation of photonic band structures” in Photonic band gaps and localizations, C. M. Soukoulis. ed. (Plenum Press NY1993).

J. D. Joannopoulos et al., Photonic crystals - Molding the flow of light (Princeton University Press1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Conversion of a triangular lattice with a circular cylinder ‘atom’; (b) Conversion of a triangular lattice with an elliptical cylinder ‘atom’; (c) TE band structure of a 2D triangular lattice with elliptical air holes in GaAs. Data used: Rx = 0.28a, Ry = 0.14a, εa=13, εb=1.0.

Fig. 2.
Fig. 2.

Band structure of a 3D diamond lattice using 343 plane waves for this calculation, the inset shows the unit cell of the diamond lattice.

Fig. 3.
Fig. 3.

Convergence of TM mode. (a) Convergence of the first band. (b) The iteration errors for the first 10 bands. A uniform mesh with different resolution is used to represent the unit cell, and each grid is averaged by a 10×10 submesh.

Fig. 4.
Fig. 4.

Convergence of TE mode. (a) Convergence of the first band. (b) The iteration errors for the first 10 bands. A uniform mesh with different resolution is used to represent the unit cell, and each grid is averaged by a 10×10 submesh.

Fig. 5.
Fig. 5.

Eigen frequency convergence as a function of grid resolution for TM mode in a 2D triangular lattice. 225 plane waves are used for this calculation. Line with ‘o’: grid is averaged by a 10×10 submesh; line with ‘+’:not averaged.

Fig. 6.
Fig. 6.

Eigen frequency convergence as a function of grid resolution for TE mode in a 2D triangular lattice. 225 plane waves are used for this calculation. Line with ‘o’: grid is averaged by a 10×10 submesh; line with ‘+’: not averaged.

Fig. 7.
Fig. 7.

Convergence of defect frequency for TM mode using different supercell size in a square lattice with the center rod being removed

Tables (2)

Tables Icon

Table 1. Comparison of several methods

Tables Icon

Table 2. Defect frequency of TM mode in a 2D square lattice using a 7×7 supercell

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

× 1 ε ( r ) × H ( r ) = ω 2 c 2 H ( r )
H ( r ) = G , λ h G , λ e ̂ λ e i ( k + G ) · r
ε ( r ) = G ε G e i G · r ε G = 1 V Ω ε ( r ) e i G · r d Ω
G k + G k + G ε 1 ( G - G ) [ e ̂ 2 · e ̂ 2 e ̂ 2 · e ̂ 1 e ̂ 1 · e ̂ 2 e ̂ 1 · e ̂ 1 ] [ h 1 , G h 2 , G ] = ω 2 c 2 [ h 1 , G h 2 , G ] .
ε ( G ) = ε b δ ( G ) + ( ε a ε b ) 2 π R 2 A J 1 ( G R ) G R = ε b δ ( G ) + 2 ( ε a ε b ) f J 1 ( G R ) G R
f = V o l a t o m V o l c e l l .
a 1 = a 1 x x ̂ + a 1 y y ̂ + a 1 z z ̂
a 2 = a 2 x x ̂ + a 2 y y ̂ + a 2 z z ̂ ,
a 3 = a 3 x x ̂ + a 3 y y ̂ + a 3 z z ̂
r = ( m a 1 x + n a 2 x + l a 3 x ) x ̂ + ( m a 1 y + n a 2 y + l a 3 y ) y ̂ + ( m a 1 z + n a 2 z + l a 3 z ) z ̂
r 2 = r T [ g ] r
[ g ] = [ a 1 x a 1 y a 1 z a 2 x a 2 y a 2 z a 3 x a 3 y a 3 z ] [ a 1 x a 2 x a 3 x a 1 y a 2 y a 3 y a 1 z a 2 z a 3 z ]
ε ( r + r 0 ) e i G · r 0 ε G .
r i ε ( r + r i ) r i e i G · r i ε G ,
ε ( G ) = 3 f ( ε a ε b ) ( sin GR GR cos GR ( GR ) 3 ) cos ( G · r 0 )

Metrics