Abstract

We discuss the application of spatial light modulators (SLMs) to the field of atom optics. We show that SLMs may be used to generate a wide variety of optical potentials that are useful for the guiding and dipole trapping of atoms. This functionality is demonstrated by the production of a number of different light potentials using a single SLM device. These include Mach-Zender interferometer patterns and the generation of a bottle-beam. We also discuss the current limitations in SLM technology with regard to the generation of both static and dynamically deformed potentials and their use in atom optics.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. G¨orlitz, S. Gupta, D.E. Pritchard and W. Ketterle, "Transport of Bose-Einstein condensates with optical tweezers," Phys. Rev. Lett. 88, 020401 (2002).
    [PubMed]
  2. R. Dumke, T. Muether, M. Volk, W. Ertmer and G. Birkl, �??Interferometer-Type structures for guided atoms,�?? Phys. Rev. Lett. 89 220402 (2002).
    [CrossRef] [PubMed]
  3. O. Houde, D. Kadio and L. Pruvost, �??Cold atom beam splitter realized with two crossing dipole guides,�?? Phys. Rev. Lett. 85 5543-5546 (2000).
    [CrossRef]
  4. M.D. Barrett, J.A. Sauer and M.S. Chapman, �??All-Optical Formation of an Atomic Bose-Einstein Condensate,�?? Phys. Rev. Lett. 87 010404 (2001).
    [CrossRef] [PubMed]
  5. M. Murdich, S. Kraft, K. Singer, R. Grimm, A. Mosk and M. Weidem¨uller, �??Sympathetic Cooling with Two Atomic Species in an Optical Trap,�?? Phys. Rev. Lett. 88, 253001 (2002).
  6. T. Freegarde and K. Dholakia, �??A cavity-enhanced optical bottle beam as a mechanical amplifier,�?? Phys. Rev. A 66 013413 (2002).
    [CrossRef]
  7. N. Schlosser, G. Reymond, I. Protsenko and P. Grangier, �??Sub-poissonian loading of single atoms in a microscopic dipole trap,�?? Nature, 411, 1024-1027(2001).
    [CrossRef] [PubMed]
  8. T. Loftus, C.A. Regal, C. Ticknor, J.L. Bohn and D.S. Jin, �??Resonant Control of Elastic Collisions in an Optically Trapped Fermi Gas of Atoms,�?? Phys. Rev. Lett. 88 173201 (2002).
    [CrossRef] [PubMed]
  9. N.V. Morrow, S.K. Dutta and G. Raithel, �??Feedback control of atomic motion in an optical lattice,�?? Phys. Rev. Lett. 88 093003 (2002).
    [CrossRef] [PubMed]
  10. E.A. Cornell and C.E. Wieman, �??Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments,�?? Rev. Mod. Phys. 74 875-893 (2002).
    [CrossRef]
  11. M.Key, I.G. Hughes, W. Rooijakkers, B.E. Sauer, E.A. Hinds, D.J. Richardson and P. Kazansky, �??Propagation of Cold Atoms along a Miniature Magnetic Guide,�?? Phys. Rev. Lett. 84, 1371-1373 (2000).
    [CrossRef] [PubMed]
  12. R. Folman, P. Kruger, D. Cassettari, B. Hesmo, T. Maier and J. Schmiedmayer, �??Controlling cold atoms using nanofabricated surfaces: Atom chips,�?? Phys. Rev. Lett. 84, 4749-4752 (2000).
    [CrossRef] [PubMed]
  13. J.A. Sauer, M.D. Barrett and M.S. Chapman, �??A storage ring for neutral atoms,�?? Phys. Rev. Lett. 87 270401 (2001).
    [CrossRef] [PubMed]
  14. D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco and J. Schmiedmayer, �??Micromanipulation of neutral atoms with nanofabricated structures,�?? Appl. Phys. B 70, 721-730 (2000).
    [CrossRef]
  15. J. Fort´agh, H. Ott, A. Grossmann and C. Zimmermann, �??Miniaturized magnetic guide for neutral atoms,�?? Appl. Phys. B 70, 701-708 (2000).
    [CrossRef]
  16. D. Muller, E.A. Cornell, M. Prevedelli, P.D.D. Schwindt, A. Zozulya and D.Z. Anderson, �??Waveguide atom beam splitter for laser-cooled neutral atoms,�?? Opt. Lett. 25, 1382-1384 (2000).
    [CrossRef]
  17. D. Cassettari, B. Hessmo, R. Folman, T. Maier and J. Schmiedmayer, �??Beam Splitter for Guided Atoms,�?? Phys. Rev. Lett. 85 5483-5486 (2000).
    [CrossRef]
  18. E. Andersson, T. Calarco, R. Folman, M. Andersson, B. Hessmo and J. Schmiedmayer, �??Multimode interferometer for guided matter waves,�?? Phys. Rev. Lett. 88, 100401 (2002).
    [CrossRef] [PubMed]
  19. E.A. Hinds, C.J. Vale and M.G. Boshier, �??Two-wire waveguide and interferometer for cold atoms,�?? Phys. Rev. Lett. 86 1462-1465 (2001).
    [CrossRef] [PubMed]
  20. A.E. Leanhardt, A.P. Chikkataur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle and D.E. Pritchard, �??Propagation of Bose-Einstein condensates in a magnetic waveguide,�?? Phys. Rev. Lett. 89 040401 (2002).
    [CrossRef] [PubMed]
  21. J. Fortagh, H. Ott, S. Kraft, A. G¨unther and C. Zimmermann, �??Surface effects in magnetic microtraps,�?? Phys. Rev. A 66, 041604 (2002).
    [CrossRef]
  22. C.Henkel, P. Kruger, R. Folman, J. Schmiedmayer, �??Fundamental limits for coherent manipulation on atom chips,�?? quant-ph/0208165.
  23. J.P. Burke Jr, S-T. Chu, G.W. Bryant, C.J. Williams and P.S. Julienne, �??Designing neutral-atom nanotraps with integrated optical waveguides,�?? Phys. Rev. A 65 043411 (2002).
  24. D. Voigt, B.T. Wolschrijn, R. Jansen, N. Bhattacharya, R.J.C. Spreeuw and H.B.V. van den Heuvell, �??Observation of radiation pressure exerted by evanescent waves," Phys. Rev. A 61 063412 (2000).
    [CrossRef]
  25. R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl and W. Ertmer, �??Micoroptical realization of arrays of selectively addressable dipole traps: A scalable con.guration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89 097903 (2002).
    [CrossRef] [PubMed]
  26. R.W. Gerchberg and W.O. Saxton, �??A practical algorithm for the determination of the phase from image and di.raction plane pictures,�?? Optik 35, 237-246 (1972).
  27. D.P. Rhodes, G.P.T. Lancaster,J.G. Livesey, D. McGloin, J. Arlt and K. Dholakia, �??Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,�?? (In Press) Opt. Commun.
  28. E.R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier, Rev. Sci. Inst. 72, 1810-1816 (2001).
    [CrossRef]
  29. Boulder Nonlinear Systems & Hamamatsu Corp. (private communication).
  30. K. Okamoto, Y. Inouye and S. Kawata, �??Use of Bessel J(1) laser beam to focus an atomic beam into a nano-scale dot,�?? Jpn. J. Appl. Phys. Part 1 40, 4544-4548 (2001).
    [CrossRef]
  31. R.L. Eriksen, V.R. Daria and J. Gluckstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10 597-602 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>.
    [CrossRef] [PubMed]
  32. P.T. Korda, M.B. Taylor and D.G. Grier, �??Kinetically locked-in collodial transport in an array of optical tweezers,�?? Phys. Rev. Lett. 89, 128301 (2002).
    [CrossRef] [PubMed]
  33. P. Korda, G.C. Spalding, E.R. Dufresne and D.G. Grier, �??Nanofabrication with holographic optical tweezers,�?? Rev. Sci. Inst. 73 1956-1957(2002).
    [CrossRef]
  34. F.B.J. Buchkremer, R. Dumke, M. Volk, T. Muther, G. Birkl and W. Ertmer, �??Quantum Information Processing with microfabricated optical elements,�?? Laser Phys. 12 736-741 (2002), quant-ph/0110119.
  35. J. Arlt and M.J. Padgett, �??Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,�?? Opt. Lett. 25 191-193 (2000).
    [CrossRef]
  36. J.E. Curtis, B.A. Koss and D.G. Grier, Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  37. N. Friedman, L. Khaykovich, R. Ozeri and N. Davidson, �??Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,�?? Phys. Rev. A 031403 (2000).
    [CrossRef]
  38. P. Rudy, R. Ejnisman, A. Rahman, S. Lee and N.P. Bigelow, �??An all optical dynamical dark trap for neutral atoms,�?? Opt. Express 8 159-165 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-2-159">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-2-159</a>.
    [CrossRef] [PubMed]
  39. P. Birch, R. Young, D. Bludgett and C. Chatwin, �??Dynamic complex wave-front modulation with an analog spatial light modualtor,�?? Opt. Lett. 26 920-922 (2001).
    [CrossRef]
  40. V. Savalli, D. Stevens, J. Estve, P. D. Featonby, V. Josse, N. Westbrook, C. I. Westbrook, and A. Aspect, �??Specular Re.ection of Matter Waves from a Rough Mirror,�?? Phys. Rev. Lett. 88 250404 (2002).
    [CrossRef] [PubMed]
  41. S. Kuhr, W. Alt, D. Schrader, M. Muller, V. Gomer and D. Mechede, �??Deterministic Delivery of a Single Atom,�?? Science 293 278-280 (2001).

Appl. Phys. B (2)

D. Cassettari, A. Chenet, R. Folman, A. Haase, B. Hessmo, P. Kruger, T. Maier, S. Schneider, T. Calarco and J. Schmiedmayer, �??Micromanipulation of neutral atoms with nanofabricated structures,�?? Appl. Phys. B 70, 721-730 (2000).
[CrossRef]

J. Fort´agh, H. Ott, A. Grossmann and C. Zimmermann, �??Miniaturized magnetic guide for neutral atoms,�?? Appl. Phys. B 70, 701-708 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Okamoto, Y. Inouye and S. Kawata, �??Use of Bessel J(1) laser beam to focus an atomic beam into a nano-scale dot,�?? Jpn. J. Appl. Phys. Part 1 40, 4544-4548 (2001).
[CrossRef]

Laser Phys. (1)

F.B.J. Buchkremer, R. Dumke, M. Volk, T. Muther, G. Birkl and W. Ertmer, �??Quantum Information Processing with microfabricated optical elements,�?? Laser Phys. 12 736-741 (2002), quant-ph/0110119.

Nature (1)

N. Schlosser, G. Reymond, I. Protsenko and P. Grangier, �??Sub-poissonian loading of single atoms in a microscopic dipole trap,�?? Nature, 411, 1024-1027(2001).
[CrossRef] [PubMed]

Opt. Commun. (2)

D.P. Rhodes, G.P.T. Lancaster,J.G. Livesey, D. McGloin, J. Arlt and K. Dholakia, �??Guiding a cold atomic beam along a co-propagating and oblique hollow light guide,�?? (In Press) Opt. Commun.

J.E. Curtis, B.A. Koss and D.G. Grier, Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Optik (1)

R.W. Gerchberg and W.O. Saxton, �??A practical algorithm for the determination of the phase from image and di.raction plane pictures,�?? Optik 35, 237-246 (1972).

Phys. Rev. A (5)

T. Freegarde and K. Dholakia, �??A cavity-enhanced optical bottle beam as a mechanical amplifier,�?? Phys. Rev. A 66 013413 (2002).
[CrossRef]

J.P. Burke Jr, S-T. Chu, G.W. Bryant, C.J. Williams and P.S. Julienne, �??Designing neutral-atom nanotraps with integrated optical waveguides,�?? Phys. Rev. A 65 043411 (2002).

D. Voigt, B.T. Wolschrijn, R. Jansen, N. Bhattacharya, R.J.C. Spreeuw and H.B.V. van den Heuvell, �??Observation of radiation pressure exerted by evanescent waves," Phys. Rev. A 61 063412 (2000).
[CrossRef]

J. Fortagh, H. Ott, S. Kraft, A. G¨unther and C. Zimmermann, �??Surface effects in magnetic microtraps,�?? Phys. Rev. A 66, 041604 (2002).
[CrossRef]

N. Friedman, L. Khaykovich, R. Ozeri and N. Davidson, �??Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap,�?? Phys. Rev. A 031403 (2000).
[CrossRef]

Phys. Rev. Lett. (17)

M.Key, I.G. Hughes, W. Rooijakkers, B.E. Sauer, E.A. Hinds, D.J. Richardson and P. Kazansky, �??Propagation of Cold Atoms along a Miniature Magnetic Guide,�?? Phys. Rev. Lett. 84, 1371-1373 (2000).
[CrossRef] [PubMed]

R. Folman, P. Kruger, D. Cassettari, B. Hesmo, T. Maier and J. Schmiedmayer, �??Controlling cold atoms using nanofabricated surfaces: Atom chips,�?? Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

J.A. Sauer, M.D. Barrett and M.S. Chapman, �??A storage ring for neutral atoms,�?? Phys. Rev. Lett. 87 270401 (2001).
[CrossRef] [PubMed]

D. Cassettari, B. Hessmo, R. Folman, T. Maier and J. Schmiedmayer, �??Beam Splitter for Guided Atoms,�?? Phys. Rev. Lett. 85 5483-5486 (2000).
[CrossRef]

E. Andersson, T. Calarco, R. Folman, M. Andersson, B. Hessmo and J. Schmiedmayer, �??Multimode interferometer for guided matter waves,�?? Phys. Rev. Lett. 88, 100401 (2002).
[CrossRef] [PubMed]

E.A. Hinds, C.J. Vale and M.G. Boshier, �??Two-wire waveguide and interferometer for cold atoms,�?? Phys. Rev. Lett. 86 1462-1465 (2001).
[CrossRef] [PubMed]

A.E. Leanhardt, A.P. Chikkataur, D. Kielpinski, Y. Shin, T.L. Gustavson, W. Ketterle and D.E. Pritchard, �??Propagation of Bose-Einstein condensates in a magnetic waveguide,�?? Phys. Rev. Lett. 89 040401 (2002).
[CrossRef] [PubMed]

T. Loftus, C.A. Regal, C. Ticknor, J.L. Bohn and D.S. Jin, �??Resonant Control of Elastic Collisions in an Optically Trapped Fermi Gas of Atoms,�?? Phys. Rev. Lett. 88 173201 (2002).
[CrossRef] [PubMed]

N.V. Morrow, S.K. Dutta and G. Raithel, �??Feedback control of atomic motion in an optical lattice,�?? Phys. Rev. Lett. 88 093003 (2002).
[CrossRef] [PubMed]

T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. G¨orlitz, S. Gupta, D.E. Pritchard and W. Ketterle, "Transport of Bose-Einstein condensates with optical tweezers," Phys. Rev. Lett. 88, 020401 (2002).
[PubMed]

R. Dumke, T. Muether, M. Volk, W. Ertmer and G. Birkl, �??Interferometer-Type structures for guided atoms,�?? Phys. Rev. Lett. 89 220402 (2002).
[CrossRef] [PubMed]

O. Houde, D. Kadio and L. Pruvost, �??Cold atom beam splitter realized with two crossing dipole guides,�?? Phys. Rev. Lett. 85 5543-5546 (2000).
[CrossRef]

M.D. Barrett, J.A. Sauer and M.S. Chapman, �??All-Optical Formation of an Atomic Bose-Einstein Condensate,�?? Phys. Rev. Lett. 87 010404 (2001).
[CrossRef] [PubMed]

M. Murdich, S. Kraft, K. Singer, R. Grimm, A. Mosk and M. Weidem¨uller, �??Sympathetic Cooling with Two Atomic Species in an Optical Trap,�?? Phys. Rev. Lett. 88, 253001 (2002).

R. Dumke, M. Volk, T. Muther, F.B.J. Buchkremer, G. Birkl and W. Ertmer, �??Micoroptical realization of arrays of selectively addressable dipole traps: A scalable con.guration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89 097903 (2002).
[CrossRef] [PubMed]

P.T. Korda, M.B. Taylor and D.G. Grier, �??Kinetically locked-in collodial transport in an array of optical tweezers,�?? Phys. Rev. Lett. 89, 128301 (2002).
[CrossRef] [PubMed]

V. Savalli, D. Stevens, J. Estve, P. D. Featonby, V. Josse, N. Westbrook, C. I. Westbrook, and A. Aspect, �??Specular Re.ection of Matter Waves from a Rough Mirror,�?? Phys. Rev. Lett. 88 250404 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

E.A. Cornell and C.E. Wieman, �??Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments,�?? Rev. Mod. Phys. 74 875-893 (2002).
[CrossRef]

Rev. Sci. Inst. (1)

E.R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, D. G. Grier, Rev. Sci. Inst. 72, 1810-1816 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Korda, G.C. Spalding, E.R. Dufresne and D.G. Grier, �??Nanofabrication with holographic optical tweezers,�?? Rev. Sci. Inst. 73 1956-1957(2002).
[CrossRef]

Science (1)

S. Kuhr, W. Alt, D. Schrader, M. Muller, V. Gomer and D. Mechede, �??Deterministic Delivery of a Single Atom,�?? Science 293 278-280 (2001).

Other (2)

Boulder Nonlinear Systems & Hamamatsu Corp. (private communication).

C.Henkel, P. Kruger, R. Folman, J. Schmiedmayer, �??Fundamental limits for coherent manipulation on atom chips,�?? quant-ph/0208165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Holograms for a 10×10 square array of traps generated using the GS algorithm. (a) Input image (b) Generated phase hologram

Fig. 2.
Fig. 2.

SLM experimental setup

Fig. 3.
Fig. 3.

(a) Mach-Zender Interferometer pattern (b) Y-splitter pattern

Fig. 4.
Fig. 4.

(a) Blue-detuned Mach-Zender Interferometer pattern (b) Blue-detuned Y-splitter pattern

Fig. 5.
Fig. 5.

Square array patterns. In (a) we see a ten-by-ten arrays of spots. Here the lattice constant is such that the zeroth order diffraction pattern interferes with the array spots. By increasing the lattice constant we can move the desired pattern away from the unwanted spot. This can then be removed by spatial filtering. Alternatively we can chose to work in a region away from the zeroth order, design the hologram such that the desired pattern is not collinear with the zero order spot, e.g. (c) where the zero order spot is seen in the upper right corner.

Fig. 6.
Fig. 6.

SLM generated bottle beam. The images are taken by moving the camera in the beam propagation distance, with (a) nearest the SLM. The images show the bottle beam evolve through a bright spot to a bright ring surrounding a region of lower intensity. The beam then evolves into a bright spot again.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( r ) = A 0 ( r ) e i ψ ( r )

Metrics