Abstract

We demonstrate tuneable optoelectronic bandpass filtering of an ASK modulated subcarrier data stream, using a two-section laser. Gain enhancement of 15dB is measured when the laser is locked to a 697MHz and 1100MHz carrier frequency.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spatiotemporal dynamics and high-frequency self-pulsations in two-section distributed feedback lasers

Xinhong Wang, Guifang Li, Jin Hong, and Stephen A. Pappert
J. Opt. Soc. Am. B 16(11) 2030-2039 (1999)

Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10GHz or higher) optical pulses

Jacob Lasri, Preetpaul Devgan, Renyong Tang, and Prem Kumar
Opt. Express 11(12) 1430-1435 (2003)

Mode-locked silicon evanescent lasers

Brian R. Koch, Alexander W. Fang, Oded Cohen, and John E. Bowers
Opt. Express 15(18) 11225-11233 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Lasher, “Analysis of a proposed bistable injection laser,” Solid State Electron. 7, 707–716 (1964).
    [Crossref]
  2. N. G. Basov, “0-1-Dynamics of injection lasers,” IEEE J. Quantum Electron. QE-4, 855–867 (1968).
    [Crossref]
  3. M. Ueno and R. Lang, “Conditions for self-sustained pulsations and bistability in semiconductor lasers,” J. Applied Physics 58, 1689–1692 (1985).
    [Crossref]
  4. P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
    [Crossref]
  5. J. B. Georges and K. Y. Lau, “800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,” IEEE Photon. Technol. Lett. 4, 662–665 (1992)
    [Crossref]
  6. R. S. Bates and S. D. Walker, “450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,” Electron. Lett. 27, 1014–1016 (1991).
    [Crossref]
  7. S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
    [Crossref]
  8. S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
    [Crossref]
  9. Sandra. E. M. Dudley, Terence J. Quinlan, and Stuart. D. Walker, “A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,” IEEE Wireless Design Conference, London, (2002).
  10. E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser diodes,” IEE Proceedings-J. 140, 16–20 (1993).
  11. Egan A. et al, “Theoretical investigations of electro-optical synchronisation of self-pulsating laser diodes,” Proc.-Optoelectronics 143, 31–36 (1996).
    [Crossref]
  12. T. W. Carr and T. Erneux, “Dimensionless rate equations and simple conditions for self-pulsing laser diodes,” IEEE J. Quantum Electron. 37, 1171–1177 (2001).
    [Crossref]
  13. R. Dixon and W. B. Joyce, “Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,” IEEE J. Quantum Electron. QE-15, 470–474 (1979).
    [Crossref]
  14. M. Kuznetsov, “Pulsations of semiconductor lasers with a proton bombarded segment: Well-developed pulsations,” IEEE J. Quantum Electron. QE-21, 587–592 (1985).
    [Crossref]

2001 (1)

T. W. Carr and T. Erneux, “Dimensionless rate equations and simple conditions for self-pulsing laser diodes,” IEEE J. Quantum Electron. 37, 1171–1177 (2001).
[Crossref]

1996 (1)

Egan A. et al, “Theoretical investigations of electro-optical synchronisation of self-pulsating laser diodes,” Proc.-Optoelectronics 143, 31–36 (1996).
[Crossref]

1994 (1)

S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
[Crossref]

1993 (1)

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser diodes,” IEE Proceedings-J. 140, 16–20 (1993).

1992 (2)

P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
[Crossref]

J. B. Georges and K. Y. Lau, “800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,” IEEE Photon. Technol. Lett. 4, 662–665 (1992)
[Crossref]

1991 (1)

R. S. Bates and S. D. Walker, “450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,” Electron. Lett. 27, 1014–1016 (1991).
[Crossref]

1990 (1)

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

1985 (2)

M. Ueno and R. Lang, “Conditions for self-sustained pulsations and bistability in semiconductor lasers,” J. Applied Physics 58, 1689–1692 (1985).
[Crossref]

M. Kuznetsov, “Pulsations of semiconductor lasers with a proton bombarded segment: Well-developed pulsations,” IEEE J. Quantum Electron. QE-21, 587–592 (1985).
[Crossref]

1979 (1)

R. Dixon and W. B. Joyce, “Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,” IEEE J. Quantum Electron. QE-15, 470–474 (1979).
[Crossref]

1968 (1)

N. G. Basov, “0-1-Dynamics of injection lasers,” IEEE J. Quantum Electron. QE-4, 855–867 (1968).
[Crossref]

1964 (1)

G. J. Lasher, “Analysis of a proposed bistable injection laser,” Solid State Electron. 7, 707–716 (1964).
[Crossref]

A., Egan

Egan A. et al, “Theoretical investigations of electro-optical synchronisation of self-pulsating laser diodes,” Proc.-Optoelectronics 143, 31–36 (1996).
[Crossref]

Avrutin, E. A.

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser diodes,” IEE Proceedings-J. 140, 16–20 (1993).

Barnsley, P. E.

P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
[Crossref]

Basov, N. G.

N. G. Basov, “0-1-Dynamics of injection lasers,” IEEE J. Quantum Electron. QE-4, 855–867 (1968).
[Crossref]

Bates, R. S.

R. S. Bates and S. D. Walker, “450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,” Electron. Lett. 27, 1014–1016 (1991).
[Crossref]

Boucouvalas, A. C.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

Bugos, A.R.

S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
[Crossref]

Carr, T. W.

T. W. Carr and T. Erneux, “Dimensionless rate equations and simple conditions for self-pulsing laser diodes,” IEEE J. Quantum Electron. 37, 1171–1177 (2001).
[Crossref]

Coles, A. N.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

Cunningham, D. G.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

Dixon, R.

R. Dixon and W. B. Joyce, “Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,” IEEE J. Quantum Electron. QE-15, 470–474 (1979).
[Crossref]

Dudley, Sandra. E. M.

Sandra. E. M. Dudley, Terence J. Quinlan, and Stuart. D. Walker, “A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,” IEEE Wireless Design Conference, London, (2002).

Erneux, T.

T. W. Carr and T. Erneux, “Dimensionless rate equations and simple conditions for self-pulsing laser diodes,” IEEE J. Quantum Electron. 37, 1171–1177 (2001).
[Crossref]

Georges, J. B.

J. B. Georges and K. Y. Lau, “800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,” IEEE Photon. Technol. Lett. 4, 662–665 (1992)
[Crossref]

Joyce, W. B.

R. Dixon and W. B. Joyce, “Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,” IEEE J. Quantum Electron. QE-15, 470–474 (1979).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, “Pulsations of semiconductor lasers with a proton bombarded segment: Well-developed pulsations,” IEEE J. Quantum Electron. QE-21, 587–592 (1985).
[Crossref]

Lang, R.

M. Ueno and R. Lang, “Conditions for self-sustained pulsations and bistability in semiconductor lasers,” J. Applied Physics 58, 1689–1692 (1985).
[Crossref]

Lanzisera, V.

S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
[Crossref]

Lasher, G. J.

G. J. Lasher, “Analysis of a proposed bistable injection laser,” Solid State Electron. 7, 707–716 (1964).
[Crossref]

Lau, K. Y.

J. B. Georges and K. Y. Lau, “800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,” IEEE Photon. Technol. Lett. 4, 662–665 (1992)
[Crossref]

Li, M.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

Olshansky, R.

S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
[Crossref]

Quinlan, Terence J.

Sandra. E. M. Dudley, Terence J. Quinlan, and Stuart. D. Walker, “A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,” IEEE Wireless Design Conference, London, (2002).

Spirit, D. M.

P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
[Crossref]

Su, S. F.

S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
[Crossref]

Ueno, M.

M. Ueno and R. Lang, “Conditions for self-sustained pulsations and bistability in semiconductor lasers,” J. Applied Physics 58, 1689–1692 (1985).
[Crossref]

Walker, S. D.

R. S. Bates and S. D. Walker, “450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,” Electron. Lett. 27, 1014–1016 (1991).
[Crossref]

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

Walker, Stuart. D.

Sandra. E. M. Dudley, Terence J. Quinlan, and Stuart. D. Walker, “A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,” IEEE Wireless Design Conference, London, (2002).

Wickens, G. E.

P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
[Crossref]

Wickes, H. J.

P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
[Crossref]

Electron. Lett. (1)

R. S. Bates and S. D. Walker, “450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,” Electron. Lett. 27, 1014–1016 (1991).
[Crossref]

IEE Proceedings-J. (1)

E. A. Avrutin, “Analysis of spontaneous emission and noise in self-pulsing laser diodes,” IEE Proceedings-J. 140, 16–20 (1993).

IEEE J. Quantum Electron. (4)

T. W. Carr and T. Erneux, “Dimensionless rate equations and simple conditions for self-pulsing laser diodes,” IEEE J. Quantum Electron. 37, 1171–1177 (2001).
[Crossref]

R. Dixon and W. B. Joyce, “Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,” IEEE J. Quantum Electron. QE-15, 470–474 (1979).
[Crossref]

M. Kuznetsov, “Pulsations of semiconductor lasers with a proton bombarded segment: Well-developed pulsations,” IEEE J. Quantum Electron. QE-21, 587–592 (1985).
[Crossref]

N. G. Basov, “0-1-Dynamics of injection lasers,” IEEE J. Quantum Electron. QE-4, 855–867 (1968).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,” IEEE J. Sel. Areas Commun. 8, 1276–1284 (1990)
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. F. Su, A.R. Bugos, V. Lanzisera, and R. Olshansky, “Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,” IEEE Photon. Technol. Lett. 6, 461–463 (1994).
[Crossref]

P. E. Barnsley, G. E. Wickens, H. J. Wickes, and D. M. Spirit, “A 4×5 Gb/s transmission system with all-optical clock recovery,” IEEE Photon. Technol. Lett. 4, 83–86 (1992).
[Crossref]

J. B. Georges and K. Y. Lau, “800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,” IEEE Photon. Technol. Lett. 4, 662–665 (1992)
[Crossref]

J. Applied Physics (1)

M. Ueno and R. Lang, “Conditions for self-sustained pulsations and bistability in semiconductor lasers,” J. Applied Physics 58, 1689–1692 (1985).
[Crossref]

Proc.-Optoelectronics (1)

Egan A. et al, “Theoretical investigations of electro-optical synchronisation of self-pulsating laser diodes,” Proc.-Optoelectronics 143, 31–36 (1996).
[Crossref]

Solid State Electron. (1)

G. J. Lasher, “Analysis of a proposed bistable injection laser,” Solid State Electron. 7, 707–716 (1964).
[Crossref]

Other (1)

Sandra. E. M. Dudley, Terence J. Quinlan, and Stuart. D. Walker, “A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,” IEEE Wireless Design Conference, London, (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Pulsating Frequency against Ig for differing τa (1/Aa in model) and τg fixed

Fig. 2.
Fig. 2.

τ ga (carrier lifetime in gain / carrier lifetime in absorber) against ag/aa differential gain coefficient to absorption coefficient), displaying regions of instability (pulsations), stability and bistability.

Fig. 3.
Fig. 3.

Natural self-pulsation frequency at 724Mhz locked to incoming sine wave at 697MHz at 30ns

Fig. 4.
Fig. 4.

Δ Frequency against m, where m is a fraction of Ig applied on top of Ig

Fig. 5.
Fig. 5.

Experimental set-up demonstrating two-section laser as an optoelectronic tuneable bandpass filter.

Fig. 6a.
Fig. 6a.

Two injected RF signals and the unlocked self-pulsation frequency of laser.

Fig. 6b.
Fig. 6b.

15.1dB gain enhancement of 697MHz signal, as compared with 1.1GHz RF signal.

Fig. 6c.
Fig. 6c.

15dB gain enhancement of 1.1GHz signal, as compared with 697MHz RF signal.

Fig. 7.
Fig. 7.

850MHz carrier modulated with a 60Mb/s ASK data stream after synchronisation with self-pulsation frequency.

Fig. 8a.
Fig. 8a.

60Mb/s demodulated data.

Fig. 8b.
Fig. 8b.

160Mb/s demodulated data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dn g dt = j g ed n g τ g c ( n g ) υg ( n g ) S g
d n a d t = j a e d n a τ a c ( n a ) + υ g ( n a ) S a
d S d t = υ [ Γ ( f g g ( n g ) f a α ( n a ) α 0 ) ] S + β B n g 2 + F s ( t )
g ( n g ) = a g ( n g n o g )
α ( n g ) = a a ( n o a n a )
d I d t = [ D 1 + D 2 1 ] I + η s ( D 1 + D t 1 ) q
d D 1 d t = γ 1 [ A 1 ( 1 + I ) D 1 + a 12 D 2 b R 1 D 1 2 b A 1 D 1 3 ]
d D 2 d t = γ 2 [ A 2 ( 1 + a I ) D 2 + a 21 D 1 b R 2 D 2 2 b A 2 D 2 3 ]

Metrics