Abstract

We demonstrate tuneable optoelectronic bandpass filtering of an ASK modulated subcarrier data stream, using a two-section laser. Gain enhancement of 15dB is measured when the laser is locked to a 697MHz and 1100MHz carrier frequency.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. J. Lasher, �??Analysis of a proposed bistable injection laser,�?? Solid State Electron. 7, 707-716 (1964).
    [CrossRef]
  2. N. G. Basov, �??0-1-Dynamics of injection lasers,�?? IEEE J. Quantum Electron. QE-4, 855-867 (1968).
    [CrossRef]
  3. M. Ueno and R. Lang, �??Conditions for self-sustained pulsations and bistability in semiconductor lasers,�?? J. Appl. Phys. 58, 1689-1692 (1985).
    [CrossRef]
  4. P. E. Barnsley, G. E. Wickens, H. J. Wickes and D. M. Spirit, �??A 4x5 Gb/s transmission system with alloptical clock recovery,�?? IEEE Photon. Technol. Lett. 4, 83-86 (1992)
    [CrossRef]
  5. J. B. Georges and K. Y. Lau, �??800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,�?? IEEE Photon. Technol. Lett. 4, 662-665 (1992)
    [CrossRef]
  6. R. S. Bates and S. D. Walker, �??450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,�?? Electron. Lett. 27, 1014-1016 (1991).
    [CrossRef]
  7. S. F. Su, A.R. Bugos, V. Lanzisera and R. Olshansky, �??Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,�?? IEEE Photon. Technol. Lett. 6, 461-463 (1994).
    [CrossRef]
  8. S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, �??Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,�?? IEEE J. Sel. Areas Commun. 8, 1276 �??1284 (1990)
    [CrossRef]
  9. Sandra. E. M. Dudley, Terence J. Quinlan, Stuart. D. Walker, �??A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,�?? IEEE Wireless Design Conference, London, (2002).
  10. E. A. Avrutin, �??Analysis of spontaneous emission and noise in self-pulsing laser diodes,�?? IEE Proceedings-J. 140, 16-20 (1993).
  11. A. Egan et al, �??Theoretical investigations of electro-optical synchronisation of self-pulsating laser diodes,�?? Proc. Optoelectronics 143, 31-36 (1996).
    [CrossRef]
  12. T. W. Carr and T. Erneux, �??Dimensionless rate equations and simple conditions for self-pulsing laser diodes,�?? IEEE J. Quantum Electron. 37, 1171-1177 (2001).
    [CrossRef]
  13. R. Dixon and W. B. Joyce, �??Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,�?? IEEE J. Quantum Electron. QE-15, 470-474 (1979).
    [CrossRef]
  14. M. Kuznetsov, �??Pulsations of semiconductor lasers with a proton bombarded segment: Well-developed pulsations,�?? IEEE J. Quantum Electron. QE-21, 587-592 (1985).
    [CrossRef]

Electron. Lett. (1)

R. S. Bates and S. D. Walker, �??450Mb/s BPSK and 1Gb/s QPSK throughput subcarrier multiple access networks using 790nm self-pulsating laser transmitter network for computer applications,�?? Electron. Lett. 27, 1014-1016 (1991).
[CrossRef]

IEE Proceedings-J. (1)

E. A. Avrutin, �??Analysis of spontaneous emission and noise in self-pulsing laser diodes,�?? IEE Proceedings-J. 140, 16-20 (1993).

IEEE J. Quantum Electron. (4)

T. W. Carr and T. Erneux, �??Dimensionless rate equations and simple conditions for self-pulsing laser diodes,�?? IEEE J. Quantum Electron. 37, 1171-1177 (2001).
[CrossRef]

R. Dixon and W. B. Joyce, �??Possible model for sustained oscillations in Al, GaAs double heterostructure lasers,�?? IEEE J. Quantum Electron. QE-15, 470-474 (1979).
[CrossRef]

M. Kuznetsov, �??Pulsations of semiconductor lasers with a proton bombarded segment: Well-developed pulsations,�?? IEEE J. Quantum Electron. QE-21, 587-592 (1985).
[CrossRef]

N. G. Basov, �??0-1-Dynamics of injection lasers,�?? IEEE J. Quantum Electron. QE-4, 855-867 (1968).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, �??Design Techniques for Subcarrier Multiplexed Broadcast Optical Networks,�?? IEEE J. Sel. Areas Commun. 8, 1276 �??1284 (1990)
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. F. Su, A.R. Bugos, V. Lanzisera and R. Olshansky, �??Demonstration of a multiple access WDM network with subcarrier multiplexed control channels,�?? IEEE Photon. Technol. Lett. 6, 461-463 (1994).
[CrossRef]

P. E. Barnsley, G. E. Wickens, H. J. Wickes and D. M. Spirit, �??A 4x5 Gb/s transmission system with alloptical clock recovery,�?? IEEE Photon. Technol. Lett. 4, 83-86 (1992)
[CrossRef]

J. B. Georges and K. Y. Lau, �??800Mb/s microwave FSK using self-pulsating compact-disk laser diodes,�?? IEEE Photon. Technol. Lett. 4, 662-665 (1992)
[CrossRef]

IEEE Wireless Design Conference (1)

Sandra. E. M. Dudley, Terence J. Quinlan, Stuart. D. Walker, �??A new optoelectronic tunable bandpass filter based on a self-pulsating laser and photodiode combination,�?? IEEE Wireless Design Conference, London, (2002).

J. Appl. Phys. (1)

M. Ueno and R. Lang, �??Conditions for self-sustained pulsations and bistability in semiconductor lasers,�?? J. Appl. Phys. 58, 1689-1692 (1985).
[CrossRef]

Proc. Optoelectronics (1)

A. Egan et al, �??Theoretical investigations of electro-optical synchronisation of self-pulsating laser diodes,�?? Proc. Optoelectronics 143, 31-36 (1996).
[CrossRef]

Solid State Electron. (1)

G. J. Lasher, �??Analysis of a proposed bistable injection laser,�?? Solid State Electron. 7, 707-716 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Pulsating Frequency against Ig for differing τa (1/Aa in model) and τg fixed

Fig. 2.
Fig. 2.

τ ga (carrier lifetime in gain / carrier lifetime in absorber) against ag/aa differential gain coefficient to absorption coefficient), displaying regions of instability (pulsations), stability and bistability.

Fig. 3.
Fig. 3.

Natural self-pulsation frequency at 724Mhz locked to incoming sine wave at 697MHz at 30ns

Fig. 4.
Fig. 4.

Δ Frequency against m, where m is a fraction of Ig applied on top of Ig

Fig. 5.
Fig. 5.

Experimental set-up demonstrating two-section laser as an optoelectronic tuneable bandpass filter.

Fig. 6a.
Fig. 6a.

Two injected RF signals and the unlocked self-pulsation frequency of laser.

Fig. 6b.
Fig. 6b.

15.1dB gain enhancement of 697MHz signal, as compared with 1.1GHz RF signal.

Fig. 6c.
Fig. 6c.

15dB gain enhancement of 1.1GHz signal, as compared with 697MHz RF signal.

Fig. 7.
Fig. 7.

850MHz carrier modulated with a 60Mb/s ASK data stream after synchronisation with self-pulsation frequency.

Fig. 8a.
Fig. 8a.

60Mb/s demodulated data.

Fig. 8b.
Fig. 8b.

160Mb/s demodulated data.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dn g dt = j g ed n g τ g c ( n g ) υg ( n g ) S g
d n a d t = j a e d n a τ a c ( n a ) + υ g ( n a ) S a
d S d t = υ [ Γ ( f g g ( n g ) f a α ( n a ) α 0 ) ] S + β B n g 2 + F s ( t )
g ( n g ) = a g ( n g n o g )
α ( n g ) = a a ( n o a n a )
d I d t = [ D 1 + D 2 1 ] I + η s ( D 1 + D t 1 ) q
d D 1 d t = γ 1 [ A 1 ( 1 + I ) D 1 + a 12 D 2 b R 1 D 1 2 b A 1 D 1 3 ]
d D 2 d t = γ 2 [ A 2 ( 1 + a I ) D 2 + a 21 D 1 b R 2 D 2 2 b A 2 D 2 3 ]

Metrics