C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998)

[CrossRef]

S. R. Arridge and M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-6-213

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Zinite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995)

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

[CrossRef]
[PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97- (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97

[CrossRef]
[PubMed]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-272

[CrossRef]
[PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour. “Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,” J. Opt. Soc. Amer. A 14, 325–342 (1997)

[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997)

[CrossRef]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997)

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

[CrossRef]
[PubMed]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997)

[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97- (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97

[CrossRef]
[PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-Based Iterative Image-Reconstruction Scheme for Time-Resolved Optical Tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999)

[CrossRef]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer — Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72, 715–732 (2002)

[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-272

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-Based Iterative Image-Reconstruction Scheme for Time-Resolved Optical Tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999)

[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

[CrossRef]
[PubMed]

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chap. 9

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995)

[CrossRef]
[PubMed]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer — Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72, 715–732 (2002)

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-Based Iterative Image-Reconstruction Scheme for Time-Resolved Optical Tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999)

[CrossRef]

I. W. Kwee, Towards a Bayesian Framework for Optical Tomography, Ph. D. Thesis (1999), University College London.

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

S. G. Nash and A. Sofer, Linear and nonlinear programming (McGraw-Hill, New York, 1996)

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995)

[CrossRef]
[PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97- (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97

[CrossRef]
[PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

Y. Pei, Optical Tomographic Imaging Using the Finite Element Method, Ph. D. Thesis (1999), Polytechnic University.

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour. “Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,” J. Opt. Soc. Amer. A 14, 325–342 (1997)

[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

R. Roy and E. M. Sevick-MUraca, “Active constrained truncated Newton method for simple-bound optical tomography,” J. Opt. Soc. Am. A 17, 1627–1641 (2000)

[CrossRef]

R. Roy and E. M. Sevick-MUraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation,” Opt. Express 4, 353–371 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353

[CrossRef]
[PubMed]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997)

[CrossRef]

F. E. W. Schmidt, Development of a Time-Resolved Optical Tomography System for Neonatal Brain Imaging, Ph. D thesis (1999), University College London

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-272

[CrossRef]
[PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

S. R. Arridge and M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-6-213

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Zinite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995)

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

[CrossRef]
[PubMed]

S. G. Nash and A. Sofer, Linear and nonlinear programming (McGraw-Hill, New York, 1996)

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997)

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour. “Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,” J. Opt. Soc. Amer. A 14, 325–342 (1997)

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour. “Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,” J. Opt. Soc. Amer. A 14, 325–342 (1997)

[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour. “Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,” J. Opt. Soc. Amer. A 14, 325–342 (1997)

[CrossRef]

A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, and P. van der Zee, “Reverse differentiation and the inverse diffusion problem,” Advances in Engineering Software 28, 217–221 (1997)

[CrossRef]

S. R. Arridge and M. Schweiger, “Photon-measurement density functions. Part2: Zinite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995)

[CrossRef]
[PubMed]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 9, 6466–6486 (2000)

[CrossRef]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-Based Iterative Image-Reconstruction Scheme for Time-Resolved Optical Tomography,” IEEE Trans. Med. Imag. 18, 262–271 (1999)

[CrossRef]

R. Roy and E. M. Sevick-MUraca, “Active constrained truncated Newton method for simple-bound optical tomography,” J. Opt. Soc. Am. A 17, 1627–1641 (2000)

[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994)

[CrossRef]

Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, and R. L. Barbour. “Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,” J. Opt. Soc. Amer. A 14, 325–342 (1997)

[CrossRef]

A. D. Klose and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer — Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72, 715–732 (2002)

[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995)

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993)

[CrossRef]
[PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97- (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97

[CrossRef]
[PubMed]

R. Roy and E. M. Sevick-MUraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation,” Opt. Express 4, 353–371 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “A gradient-based optimisation scheme for optical tomography,” Opt. Express 2, 213–226 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-6-213

[CrossRef]
[PubMed]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-272

[CrossRef]
[PubMed]

F. E. W. Schmidt, Development of a Time-Resolved Optical Tomography System for Neonatal Brain Imaging, Ph. D thesis (1999), University College London

Y. Pei, Optical Tomographic Imaging Using the Finite Element Method, Ph. D. Thesis (1999), Polytechnic University.

I. W. Kwee, Towards a Bayesian Framework for Optical Tomography, Ph. D. Thesis (1999), University College London.

S. G. Nash and A. Sofer, Linear and nonlinear programming (McGraw-Hill, New York, 1996)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chap. 9