Abstract

Studies have shown that 1st order coupling coefficient dispersion can cause significant effects on the propagation of short pulses in a twin-core coupler. In this paper, we have extended the study to the case of nonidentical cores and investigated the effect of 2nd order dispersive coupling coefficient on switching dynamics. A pair of new coupled nonlinear equations have been presented and analyzed.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation of short optical pulses in directional couplers with Kerr nonlinearity

Kin Seng Chiang
J. Opt. Soc. Am. B 14(6) 1437-1443 (1997)

Influence of intermodal dispersion on the switching of solitons at different wavelengths in twin-core fiber couplers

Carlos R. Paiva, António L. Topa, and Afonso M. Barbosa
J. Opt. Soc. Am. B 16(10) 1636-1641 (1999)

Soliton controlling, switching, and splitting in nonlinear fused-fiber couplers

Pak L. Chu, Yuri S. Kivshar, Boris A. Malomed, Gang-Ding Peng, and Manuel L. Quiroga-Teixeiro
J. Opt. Soc. Am. B 12(5) 898-903 (1995)

References

  • View by:
  • |
  • |
  • |

  1. P. Shum, K. S. Chiang, and W. Alec Gambling, “Switching Dynamics of Short Optical Pulses in a Nonliner Directional Coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999).
    [Crossref]
  2. K. S. Chiang, “Coupled-mode equation for pulse switching in parallel waveguieds,” IEEE J. Quantum Electron. 33, 950–954 (1997).
    [Crossref]
  3. P. M. Ramos and C. R. Paiva, “All-Optical Pulse Switching in Twin-Core Fiber Couplers with Intermodal Dispersion,” IEEE J.Quantum Electron. 35, 983–989 (1999).
    [Crossref]
  4. K. S. Chiang, “Intermodal Dispersion in Two-Core Optical Fibers,” Opt. Lett. 20, 997–999 (1995).
    [Crossref] [PubMed]
  5. H. Ghafouri-Shiraz, P. Shum, and M. Nagata, “A Novel Method for Analysis of Soliton Propagation in Optical Fibers,” IEEE J.Quantum Electron. 31, 190–200 (1995).
    [Crossref]

1999 (2)

P. Shum, K. S. Chiang, and W. Alec Gambling, “Switching Dynamics of Short Optical Pulses in a Nonliner Directional Coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999).
[Crossref]

P. M. Ramos and C. R. Paiva, “All-Optical Pulse Switching in Twin-Core Fiber Couplers with Intermodal Dispersion,” IEEE J.Quantum Electron. 35, 983–989 (1999).
[Crossref]

1997 (1)

K. S. Chiang, “Coupled-mode equation for pulse switching in parallel waveguieds,” IEEE J. Quantum Electron. 33, 950–954 (1997).
[Crossref]

1995 (2)

K. S. Chiang, “Intermodal Dispersion in Two-Core Optical Fibers,” Opt. Lett. 20, 997–999 (1995).
[Crossref] [PubMed]

H. Ghafouri-Shiraz, P. Shum, and M. Nagata, “A Novel Method for Analysis of Soliton Propagation in Optical Fibers,” IEEE J.Quantum Electron. 31, 190–200 (1995).
[Crossref]

Chiang, K. S.

P. Shum, K. S. Chiang, and W. Alec Gambling, “Switching Dynamics of Short Optical Pulses in a Nonliner Directional Coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999).
[Crossref]

K. S. Chiang, “Coupled-mode equation for pulse switching in parallel waveguieds,” IEEE J. Quantum Electron. 33, 950–954 (1997).
[Crossref]

K. S. Chiang, “Intermodal Dispersion in Two-Core Optical Fibers,” Opt. Lett. 20, 997–999 (1995).
[Crossref] [PubMed]

Gambling, W. Alec

P. Shum, K. S. Chiang, and W. Alec Gambling, “Switching Dynamics of Short Optical Pulses in a Nonliner Directional Coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999).
[Crossref]

Ghafouri-Shiraz, H.

H. Ghafouri-Shiraz, P. Shum, and M. Nagata, “A Novel Method for Analysis of Soliton Propagation in Optical Fibers,” IEEE J.Quantum Electron. 31, 190–200 (1995).
[Crossref]

Nagata, M.

H. Ghafouri-Shiraz, P. Shum, and M. Nagata, “A Novel Method for Analysis of Soliton Propagation in Optical Fibers,” IEEE J.Quantum Electron. 31, 190–200 (1995).
[Crossref]

Paiva, C. R.

P. M. Ramos and C. R. Paiva, “All-Optical Pulse Switching in Twin-Core Fiber Couplers with Intermodal Dispersion,” IEEE J.Quantum Electron. 35, 983–989 (1999).
[Crossref]

Ramos, P. M.

P. M. Ramos and C. R. Paiva, “All-Optical Pulse Switching in Twin-Core Fiber Couplers with Intermodal Dispersion,” IEEE J.Quantum Electron. 35, 983–989 (1999).
[Crossref]

Shum, P.

P. Shum, K. S. Chiang, and W. Alec Gambling, “Switching Dynamics of Short Optical Pulses in a Nonliner Directional Coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999).
[Crossref]

H. Ghafouri-Shiraz, P. Shum, and M. Nagata, “A Novel Method for Analysis of Soliton Propagation in Optical Fibers,” IEEE J.Quantum Electron. 31, 190–200 (1995).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Shum, K. S. Chiang, and W. Alec Gambling, “Switching Dynamics of Short Optical Pulses in a Nonliner Directional Coupler,” IEEE J. Quantum Electron. 35, 79–83 (1999).
[Crossref]

K. S. Chiang, “Coupled-mode equation for pulse switching in parallel waveguieds,” IEEE J. Quantum Electron. 33, 950–954 (1997).
[Crossref]

IEEE J.Quantum Electron. (2)

P. M. Ramos and C. R. Paiva, “All-Optical Pulse Switching in Twin-Core Fiber Couplers with Intermodal Dispersion,” IEEE J.Quantum Electron. 35, 983–989 (1999).
[Crossref]

H. Ghafouri-Shiraz, P. Shum, and M. Nagata, “A Novel Method for Analysis of Soliton Propagation in Optical Fibers,” IEEE J.Quantum Electron. 31, 190–200 (1995).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1 (a)
Fig. 1 (a)

Propagation of a pulse with C21=C12=0 at A=4.0

Fig. 1(b)
Fig. 1(b)

Propagation of a pulse with C21=C12=0 at A=4.5

Fig. 2 (a)
Fig. 2 (a)

Propagation of a pulse with C21=C12≠0 at A=4.5

Fig. 2(b)
Fig. 2(b)

Propagation of a pulse with C21=C12≠0 at A=4.9

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i ( a 1 z + 1 v g 1 a 1 t + C 12 ' + a 2 t ) k 1 " 2 2 a 1 t 2 + C 12 a 2 C 12 " 2 2 a 2 t 2 = 0
i ( a 2 z + 1 v g 2 a 2 t + C 21 ' + a 1 t ) k 2 " 2 2 a 2 t 2 + C 21 a 1 C 21 " 2 2 a 1 t 2 = 0
i ( a 1 Z t 0 k 2 " ( 1 v g 1 1 v g 2 ) a 1 T t 0 C 21 ' k 2 " a 2 T ) + 1 2 k 1 " k 2 " 2 a 1 T 2 t 0 2 C 21 k 2 " a 2 + C 21 " 2 k 2 " 2 a 2 T 2 + a 1 2 a 1 = 0
i ( a 2 Z t 0 C 21 ' k 2 " a 1 T ) + 1 2 2 a 2 T 2 t 0 2 C 12 k 2 " a 1 + C 12 " 2 a 1 2 k 2 " T 2 + a 2 2 a 2 = 0

Metrics