Abstract

We present a single-shot wide-field CCD based coherence-gated imaging technique that utilizes spatially separated phase-stepped images and requires only one CCD camera to achieve simultaneous acquisition of four phase-stepped images. This technique provides a relatively low cost system for depth-resolved imaging of dynamic samples. We demonstrate real-time coherence-gated imaging of a moving watch cog, 3D reconstructions of a coin, phase measurements of the surface of a test-chart and depth-resolved imaging in a weakly scattering sample of onion.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. M. Rollins, M. D. Kulkarni, S. Yaxdanfar, R. Ung-arynyawee, and J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219.
    [Crossref] [PubMed]
  3. M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
    [Crossref]
  4. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-429.
    [Crossref] [PubMed]
  5. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991)
    [Crossref] [PubMed]
  6. E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28, 260–264 (1997)
    [Crossref]
  7. P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University Press, 1996), Chap. 2.
    [Crossref]
  8. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phasecontrast microscope by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999)
    [Crossref]
  9. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995)
    [Crossref] [PubMed]
  10. Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
    [Crossref]
  11. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
    [Crossref]
  12. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998)
    [Crossref]
  13. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002)
    [Crossref]
  14. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002)
    [Crossref] [PubMed]
  15. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002)
    [Crossref] [PubMed]
  16. R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984)
  17. A. L. Weijers, H. Brug, and H. J. Frankena, “Polarisation phase stepping with a Savart element,” Appl. Opt. 37, 5150–5155 (1998)
    [Crossref]
  18. Q. Kemao, M. Hong, and W. Xiaoping, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999)
    [Crossref]
  19. N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
    [Crossref]
  20. P. C. Sun and E. N. Leith, “Broad-source image plane holography as a confocal imaging process,” Appl. Opt. 33, 597–602 (1994)
    [Crossref] [PubMed]
  21. J. A. Ferrari, E. M. Frins, and C. D. Perciante, “A new scheme for phase-shifting ESPI using polarized light,” Opt. Commun. 202, 233–237 (2002)
    [Crossref]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), Chap. 4.
  23. K. Creath, Phase-Measurement Interferometry Techniques, Progress in Optics XXVI, Ed. E. Wolf (Elsevier Science, 1988) Chap. 5.

2002 (7)

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-429.
[Crossref] [PubMed]

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002)
[Crossref]

B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002)
[Crossref] [PubMed]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002)
[Crossref] [PubMed]

J. A. Ferrari, E. M. Frins, and C. D. Perciante, “A new scheme for phase-shifting ESPI using polarized light,” Opt. Commun. 202, 233–237 (2002)
[Crossref]

2001 (1)

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

1999 (2)

Q. Kemao, M. Hong, and W. Xiaoping, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999)
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phasecontrast microscope by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999)
[Crossref]

1998 (3)

1997 (1)

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28, 260–264 (1997)
[Crossref]

1996 (1)

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

1995 (1)

1994 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991)
[Crossref] [PubMed]

1984 (1)

R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984)

Ansari, Z.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Astrakharchik, E.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Barry, N. P.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995)
[Crossref] [PubMed]

Beaurepaire, E.

Benattar, L.

Blanchot, L.

Boccara, A. C.

Bourquin, S.

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

Brug, H.

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), Chap. 4.

Cao, X. F.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H.

Chen, Y.

Creath, K.

K. Creath, Phase-Measurement Interferometry Techniques, Progress in Optics XXVI, Ed. E. Wolf (Elsevier Science, 1988) Chap. 5.

Cuche, E.

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phasecontrast microscope by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999)
[Crossref]

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28, 260–264 (1997)
[Crossref]

Dainty, J. C.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995)
[Crossref] [PubMed]

De Martino, A.

Depeursinge, C.

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phasecontrast microscope by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999)
[Crossref]

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28, 260–264 (1997)
[Crossref]

Dilworth, D.

Drévillon, B.

Dubois, A.

Ducros, M.

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-429.
[Crossref] [PubMed]

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

Dunsby, C.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Ferrari, J. A.

J. A. Ferrari, E. M. Frins, and C. D. Perciante, “A new scheme for phase-shifting ESPI using polarized light,” Opt. Commun. 202, 233–237 (2002)
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Frankena, H. J.

French, P. M. W.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995)
[Crossref] [PubMed]

Frins, E. M.

J. A. Ferrari, E. M. Frins, and C. D. Perciante, “A new scheme for phase-shifting ESPI using polarized light,” Opt. Commun. 202, 233–237 (2002)
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), Chap. 4.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gu, Y.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University Press, 1996), Chap. 2.
[Crossref]

Headley, W.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hong, M.

Q. Kemao, M. Hong, and W. Xiaoping, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999)
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hyde, S. C. W.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995)
[Crossref] [PubMed]

Itoh, M.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Izatt, J. A.

Jones, R.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995)
[Crossref] [PubMed]

Karamata, B.

Karamater, B.

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

Kemao, Q.

Q. Kemao, M. Hong, and W. Xiaoping, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999)
[Crossref]

Klein, M. B.

Kulkarni, M. D.

Lasser, T.

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathé, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-429.
[Crossref] [PubMed]

Laubscher, M.

Laubsher, M.

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

Laude, B.

Lebec, M.

Leith, E.

Leith, E. N.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lopez, J.

Marquet, P.

Melloch, M. R.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Moore, R.

R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984)

Morgan, S. P.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Nolte, D. D.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Parsons-Karavassilis, D.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Perciante, C. D.

J. A. Ferrari, E. M. Frins, and C. D. Perciante, “A new scheme for phase-shifting ESPI using polarized light,” Opt. Commun. 202, 233–237 (2002)
[Crossref]

Poscio, P.

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28, 260–264 (1997)
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rollins, A. M.

Saint-Jalmes, H.

Salathé, R.

Salathé, R. P.

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

Sawyer, N. B. E.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schwartz, L.

See, C. W.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Shekunov, B. Y.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Siegel, J.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

Smythe, R.

R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984)

Somekh, M. G.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, P. C.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ung-arynyawee, R.

Vabre, L.

Valdmanis, J.

Wechsler, B. A.

Weijers, A. L.

Xiaoping, W.

Q. Kemao, M. Hong, and W. Xiaoping, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999)
[Crossref]

Yaxdanfar, S.

Appl. Opt. (5)

J. Mod. Opt. (1)

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High-speed 3D imaging using photorefractive holography with novel low-coherence interferometers,” J. Mod. Opt. 49, 877–887 (2002)
[Crossref]

J. Opt. (1)

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28, 260–264 (1997)
[Crossref]

Opt. Commun. (3)

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser, and R. P. Salathé, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Commun. 202, 29–35 (2002)
[Crossref]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, “High resolution depth resolved imaging through scattering media using time resolved holography,” Opt. Commun. 122, 111–116 (1996)
[Crossref]

J. A. Ferrari, E. M. Frins, and C. D. Perciante, “A new scheme for phase-shifting ESPI using polarized light,” Opt. Commun. 202, 233–237 (2002)
[Crossref]

Opt. Eng. (1)

R. Smythe and R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984)

Opt. Express (2)

Opt. Lasers Eng. (1)

Q. Kemao, M. Hong, and W. Xiaoping, “Real-time polarization phase shifting technique for dynamic deformation measurement,” Opt. Lasers Eng. 31, 289–295 (1999)
[Crossref]

Opt. Lett. (4)

Rev. Sci. Inst. (1)

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov, and E. Astrakharchik, “Wide field amplitude and phase confocal microscope with parallel phase stepping,” Rev. Sci. Inst. 72, 3793–3801 (2001)
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254 (5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University Press, 1996), Chap. 2.
[Crossref]

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), Chap. 4.

K. Creath, Phase-Measurement Interferometry Techniques, Progress in Optics XXVI, Ed. E. Wolf (Elsevier Science, 1988) Chap. 5.

Supplementary Material (6)

» Media 1: MOV (309 KB)     
» Media 2: MOV (180 KB)     
» Media 3: MOV (134 KB)     
» Media 4: MOV (150 KB)     
» Media 5: MOV (947 KB)     
» Media 6: MOV (194 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup; O object, R reference mirror, L1-5 lenses, S1-2 slits, PBS1-3 polarizing beam splitter cube, NPBS non-polarising beam splitter cube, P periscope, M1-6 mirrors, Q1-4 quarter wave plates. Inset shows CCD image acquired with a USAF test chart placed at O.

Fig. 2.
Fig. 2.

Sectioning curve obtained with Hitachi LED and 2×2 software binning, (☐) Measured points, (.....) Sectioning curve calculated from measured LED spectrum. Gaussian FWHM is 6.2 µm

Fig. 3.
Fig. 3.

(a) (0.3 MB) Movie of direct image of watch cog, (b)-(d) (all 0.2 MB) movies of processed sectioned images at depths of z = 0.55 mm, 0.97 mm and 2.54 mm respectively, relative to the front surface (see (a)). The exposure time was 1 ms and a frame rate of 16.5 Hz using 2×2 hardware binning. [Media 3] [Media 4]

Fig. 4.
Fig. 4.

Computer 3D rendering of a set of 65 slices acquired of the numeral 5 on a 5 pence piece. The distance between successive acquisitions is 2 µm and the field of view is 2.9×3.9×0.13 mm. (a) and (b) are reconstructed depth-resolved images separated in height by 70 µm, (c) is a computer rendering of the acquired volume.

Fig. 5.
Fig. 5.

(a) calculated wrapped phase image of USAF test chart obtained using ×11 magnification, field of view 350×260 µm (b) unwrapped false-color image of (a) with linear tilt subtracted. Analysis of (b) gives the thickness of the metallic coating of the test chart to be 120 nm.

Fig. 6.
Fig. 6.

(a) (1 MB) Movie of calculated sectioned image for a sample of onion (x-y plane), field of view 270×250 µm. (b) (0.2 MB) movie of data volume shown in (a) re-sampled into an x-z slice, field of view 270×210 µm (assuming a sample refractive index of n = 1.3).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P 0 = [ 1 0 0 0 ] , P 90 = [ 0 0 0 1 ] , Q 0 = [ 1 0 0 i ] , Q 45 = 1 2 [ 1 i i 1 ]
1 a = P 0 Q 45 Q 0 , 1 b = P 0 Q 45 , 2 a = P 90 Q 45 Q 0 , 2 b = P 90 Q 45
E in = [ O exp ( i φ O ) R exp ( i φ R ) ]
I 1 a = 1 2 O 2 + 1 2 R 2 + OR cos ( φ O φ R )
I 1 b = 1 2 O 2 + 1 2 R 2 + OR sin ( φ O φ R )
I 2 a = 1 2 O 2 + 1 2 R 2 OR cos ( φ O φ R )
I 2 b = 1 2 O 2 + 1 2 R 2 OR sin ( φ O φ R )
I n = A n O 2 + B n R 2 + 2 O R γ ( δ ) M n A n B n cos ( ϕ ( δ ) + n )
S O γ ( δ ) ( 1 L 1 2 ( I 3 π 2 A 3 π 2 I π 2 A π 2 K 1 ) 2 + 1 L 2 2 ( I 0 A 0 I π A π K 2 ) 2 ) 1 2
tan ( ϕ ) = L 2 ( I 3 π 2 A 3 π 2 I π 2 A π 2 K 1 ) L 1 ( I 0 A 0 I π A π K 2 )
S = ( I π I 0 ) 2 + ( I 3 π 2 I π 2 ) 2

Metrics