Abstract

We present a single-shot wide-field CCD based coherence-gated imaging technique that utilizes spatially separated phase-stepped images and requires only one CCD camera to achieve simultaneous acquisition of four phase-stepped images. This technique provides a relatively low cost system for depth-resolved imaging of dynamic samples. We demonstrate real-time coherence-gated imaging of a moving watch cog, 3D reconstructions of a coin, phase measurements of the surface of a test-chart and depth-resolved imaging in a weakly scattering sample of onion.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, �??Optical Coherence Tomography,�?? Science 254 (5035), 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. M. Rollins, M. D. Kulkarni, S. Yaxdanfar, R. Ung-arynyawee and J. A. Izatt, �??In vivo video rate optical coherence tomography,�?? Opt. Express 3, 219-229 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a>.
    [CrossRef] [PubMed]
  3. M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser and R. P. Salathé, �??Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,�?? Opt. Commun. 202, 29-35 (2002).
    [CrossRef]
  4. M. Laubscher, M. Ducros, B. Karamata, T. Lasser and R. Salathé, �??Video-rate three-dimensional optical coherence tomography,�?? Opt. Express 10, 429-435 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-429">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-429</a>.
    [CrossRef] [PubMed]
  5. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez and J. Valdmanis, �??Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,�?? Opt. Lett. 16, 487-489 (1991).
    [CrossRef] [PubMed]
  6. E. Cuche, P. Poscio and C. Depeursinge, �??Optical tomography by means of a numerical low-coherence holographic technique,�?? J. Opt. 28, 260-264 (1997).
    [CrossRef]
  7. P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University Press, 1996), Chap. 2.
    [CrossRef]
  8. E. Cuche, P. Marquet and C. Depeursinge, �??Simultaneous amplitude-contrast and quantitative phasecontrast microscope by numerical reconstruction of Fresnel off-axis holograms,�?? Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  9. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein and B. A. Wechsler, �??Depth-resolved holographic imaging through scattering media by photorefraction,�?? Opt. Lett. 20, 1331-1333 (1995)
    [CrossRef] [PubMed]
  10. Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley and M. R. Melloch, �??High-speed 3D imaging using photorefractive holography with novel lowcoherence interferometers,�?? J. Mod. Opt. 49, 877-887 (2002).
    [CrossRef]
  11. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty and P. M. W. French, �??High resolution depth resolved imaging through scattering media using time resolved holography,�?? Opt. Commun. 122, 111-116 (1996).
    [CrossRef]
  12. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot and H. Saint-Jalmes, �??Full-field optical coherence microscopy,�?? Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  13. L. Vabre, A. Dubois and A. C. Boccara, �??Thermal-light full-field optical coherence tomography,�?? Opt. Lett. 27, 530-532 (2002).
    [CrossRef]
  14. B. Laude, A. De Martino, B. Drévillon, L. Benattar and L. Schwartz, �??Full-field optical coherence tomography with thermal light,�?? Appl. Opt. 41, 6637-6645 (2002)
    [CrossRef] [PubMed]
  15. A. Dubois, L. Vabre, A. C. Boccara and E. Beaurepaire, �??High-resolution full-field optical coherence tomography with a Linnik microscope,�?? Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  16. R. Smythe and R. Moore, �??Instantaneous phase measuring interferometry,�?? Opt. Eng. 23, 361-364 (1984).
  17. A. L. Weijers, H. Brug and H. J. Frankena, �??Polarisation phase stepping with a Savart element,�?? Appl. Opt. 37, 5150-5155 (1998).
    [CrossRef]
  18. Q. Kemao, M. Hong and W. Xiaoping, �??Real-time polarization phase shifting technique for dynamic deformation measurement,�?? Opt. Lasers Eng. 31, 289-295 (1999).
    [CrossRef]
  19. N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov and E. Astrakharchik, �??Wide field amplitude and phase confocal microscope with parallel phase stepping,�?? Rev. Sci. Inst. 72, 3793-3801 (2001).
    [CrossRef]
  20. P. C. Sun and E. N. Leith, �??Broad-source image plane holography as a confocal imaging process,�?? Appl. Opt. 33, 597-602 (1994).
    [CrossRef] [PubMed]
  21. J. A. Ferrari, E. M. Frins and C. D. Perciante, �??A new scheme for phase-shifting ESPI using polarized light,�?? Opt. Commun. 202, 233-237 (2002).
    [CrossRef]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), Chap. 4.
  23. K. Creath, Phase-Measurement Interferometry Techniques, Progress in Optics XXVI, Ed. E. Wolf (Elsevier Science, 1988) Chap. 5.

Appl. Opt.

J. Mod. Opt.

Y. Gu, Z. Ansari, C. Dunsby, D. Parsons-Karavassilis, J. Siegel, M. Itoh, P. M. W. French, D. D. Nolte, W. Headley and M. R. Melloch, �??High-speed 3D imaging using photorefractive holography with novel lowcoherence interferometers,�?? J. Mod. Opt. 49, 877-887 (2002).
[CrossRef]

J. Opt.

E. Cuche, P. Poscio and C. Depeursinge, �??Optical tomography by means of a numerical low-coherence holographic technique,�?? J. Opt. 28, 260-264 (1997).
[CrossRef]

Opt. Commun.

M. Ducros, M. Laubsher, B. Karamater, S. Bourquin, T. Lasser and R. P. Salathé, �??Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,�?? Opt. Commun. 202, 29-35 (2002).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty and P. M. W. French, �??High resolution depth resolved imaging through scattering media using time resolved holography,�?? Opt. Commun. 122, 111-116 (1996).
[CrossRef]

J. A. Ferrari, E. M. Frins and C. D. Perciante, �??A new scheme for phase-shifting ESPI using polarized light,�?? Opt. Commun. 202, 233-237 (2002).
[CrossRef]

Opt. Eng.

R. Smythe and R. Moore, �??Instantaneous phase measuring interferometry,�?? Opt. Eng. 23, 361-364 (1984).

Opt. Express

Opt. Lasers Eng.

Q. Kemao, M. Hong and W. Xiaoping, �??Real-time polarization phase shifting technique for dynamic deformation measurement,�?? Opt. Lasers Eng. 31, 289-295 (1999).
[CrossRef]

Opt. Lett.

Rev. Sci. Inst.

N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, X. F. Cao, B. Y. Shekunov and E. Astrakharchik, �??Wide field amplitude and phase confocal microscope with parallel phase stepping,�?? Rev. Sci. Inst. 72, 3793-3801 (2001).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, �??Optical Coherence Tomography,�?? Science 254 (5035), 1178-1181 (1991).
[CrossRef] [PubMed]

Other

P. Hariharan, Optical Holography: Principles, techniques and applications (Cambridge University Press, 1996), Chap. 2.
[CrossRef]

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Wiley, 1975), Chap. 4.

K. Creath, Phase-Measurement Interferometry Techniques, Progress in Optics XXVI, Ed. E. Wolf (Elsevier Science, 1988) Chap. 5.

Supplementary Material (6)

» Media 1: MOV (309 KB)     
» Media 2: MOV (180 KB)     
» Media 3: MOV (134 KB)     
» Media 4: MOV (150 KB)     
» Media 5: MOV (947 KB)     
» Media 6: MOV (194 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup; O object, R reference mirror, L1-5 lenses, S1-2 slits, PBS1-3 polarizing beam splitter cube, NPBS non-polarising beam splitter cube, P periscope, M1-6 mirrors, Q1-4 quarter wave plates. Inset shows CCD image acquired with a USAF test chart placed at O.

Fig. 2.
Fig. 2.

Sectioning curve obtained with Hitachi LED and 2×2 software binning, (☐) Measured points, (.....) Sectioning curve calculated from measured LED spectrum. Gaussian FWHM is 6.2 µm

Fig. 3.
Fig. 3.

(a) (0.3 MB) Movie of direct image of watch cog, (b)-(d) (all 0.2 MB) movies of processed sectioned images at depths of z = 0.55 mm, 0.97 mm and 2.54 mm respectively, relative to the front surface (see (a)). The exposure time was 1 ms and a frame rate of 16.5 Hz using 2×2 hardware binning. [Media 3] [Media 4]

Fig. 4.
Fig. 4.

Computer 3D rendering of a set of 65 slices acquired of the numeral 5 on a 5 pence piece. The distance between successive acquisitions is 2 µm and the field of view is 2.9×3.9×0.13 mm. (a) and (b) are reconstructed depth-resolved images separated in height by 70 µm, (c) is a computer rendering of the acquired volume.

Fig. 5.
Fig. 5.

(a) calculated wrapped phase image of USAF test chart obtained using ×11 magnification, field of view 350×260 µm (b) unwrapped false-color image of (a) with linear tilt subtracted. Analysis of (b) gives the thickness of the metallic coating of the test chart to be 120 nm.

Fig. 6.
Fig. 6.

(a) (1 MB) Movie of calculated sectioned image for a sample of onion (x-y plane), field of view 270×250 µm. (b) (0.2 MB) movie of data volume shown in (a) re-sampled into an x-z slice, field of view 270×210 µm (assuming a sample refractive index of n = 1.3).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P 0 = [ 1 0 0 0 ] , P 90 = [ 0 0 0 1 ] , Q 0 = [ 1 0 0 i ] , Q 45 = 1 2 [ 1 i i 1 ]
1 a = P 0 Q 45 Q 0 , 1 b = P 0 Q 45 , 2 a = P 90 Q 45 Q 0 , 2 b = P 90 Q 45
E in = [ O exp ( i φ O ) R exp ( i φ R ) ]
I 1 a = 1 2 O 2 + 1 2 R 2 + OR cos ( φ O φ R )
I 1 b = 1 2 O 2 + 1 2 R 2 + OR sin ( φ O φ R )
I 2 a = 1 2 O 2 + 1 2 R 2 OR cos ( φ O φ R )
I 2 b = 1 2 O 2 + 1 2 R 2 OR sin ( φ O φ R )
I n = A n O 2 + B n R 2 + 2 O R γ ( δ ) M n A n B n cos ( ϕ ( δ ) + n )
S O γ ( δ ) ( 1 L 1 2 ( I 3 π 2 A 3 π 2 I π 2 A π 2 K 1 ) 2 + 1 L 2 2 ( I 0 A 0 I π A π K 2 ) 2 ) 1 2
tan ( ϕ ) = L 2 ( I 3 π 2 A 3 π 2 I π 2 A π 2 K 1 ) L 1 ( I 0 A 0 I π A π K 2 )
S = ( I π I 0 ) 2 + ( I 3 π 2 I π 2 ) 2

Metrics