Abstract

Microstructure fibers with multiple submicron cores are used to frequency-convert unamplified 0.3-nJ, 80-fs pulses of 800-nm Ti: sapphire laser radiation to the spectral range of 400–500 nm. This frequency-upconverted radiation is then employed to induce reversible changes in the absorption spectrum of spiropyran molecules through photochromic transformations in a solid-phase spiropyran/PMMA sample. Microstructure fibers are thus shown to enhance the capabilities of low-power femtosecond lasers, making unamplified ultrashort pulses suitable for photochemical and micromachining applications.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic bandgap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  3. W.H. Reeves, J.C. Knight, P.St.J. Russell, and P.J. Roberts, �??Demonstration of ultraflattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609-613 (2002), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>.
    [CrossRef] [PubMed]
  4. N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson, �??Nonlinearity in holey optical fibers: measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  5. A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, �??Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,�?? Appl. Phys. B 73, 181-184 (2001).
    [CrossRef]
  6. Nonlinear optics of photonic crystals, Feature issue of J. Opt. Soc. Am. B 19, no. 9 (2002).
  7. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>.
    [CrossRef] [PubMed]
  8. J.K. Ranka, R.S. Windeler, and A.J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  9. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  10. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science, 288, 635-639 (2000).
    [CrossRef] [PubMed]
  11. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  12. A. Baltuska, T. Fuji, and T. Kobayashi, �??Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier,�?? Opt. Lett. 27, 1241-1243 (2002).
    [CrossRef]
  13. A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel�??skii, Yu.N. Kondrat�??ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, J. Raman Spectrosc. �??Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,�?? 33, 888-896 (2002).
    [CrossRef]
  14. I. Hartl, X. D. Li, C. Chudoba, R.K. Rhanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, and R.S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  15. A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel'nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, �??Enhanced �?(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2183-2191 (2002).
    [CrossRef]
  16. S. Coen, A. Hing Lun Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  17. A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Nonlinear generation of very high-order UV modes in microstructured fibers,�?? Opt. Express 11, 910-918 (2003), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910</a>.
    [CrossRef] [PubMed]
  18. A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat Jr., M. Scalora, D. Chorvat, and A.M. Zheltikov, �??Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,�?? Appl. Phys. B 77, no. 1/2 (2003).
    [CrossRef]
  19. H. Dürr and H. Bouas-Laurent (Eds.), Photochromism: Molecules and Systems (Elsevier, Amsterdam, 1990).
  20. D.A. Parthenopoulos and P.M. Rentzepis, �??Three-dimensional optical storage memory,�?? Science 245, 843-845 (1989).
    [CrossRef] [PubMed]
  21. D.A. Akimov, N.I. Koroteev, S.A. Magnitskii, A.N. Naumov, D.A. Sidorov-Biryukov, A.B. Fedotov, and A.M. Zheltikov, �??Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,�?? Jpn. J. Appl. Phys. 36, 426-428 (1997).
    [CrossRef]
  22. S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, �??Reversible optical structuring of polymer waveguides doped with photochromic molecules,�?? Appl. Phys. Lett. 77, 921-923 (2000).
    [CrossRef]
  23. S.O. Konorov, A.B. Fedotov, and A.M. Zheltikov, �??Three-dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,�?? Appl. Phys. B 76, 707-710 (2003).
    [CrossRef]
  24. I. Willner, �??Photoswitchable biomaterials: en route to optobioelectronic systems,�?? Acc. Chem. Res. 30, 347-356 (1997).
    [CrossRef]

Acc. Chem. Res.

I. Willner, �??Photoswitchable biomaterials: en route to optobioelectronic systems,�?? Acc. Chem. Res. 30, 347-356 (1997).
[CrossRef]

Appl. Phys. B

S.O. Konorov, A.B. Fedotov, and A.M. Zheltikov, �??Three-dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,�?? Appl. Phys. B 76, 707-710 (2003).
[CrossRef]

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, �??Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,�?? Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat Jr., M. Scalora, D. Chorvat, and A.M. Zheltikov, �??Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,�?? Appl. Phys. B 77, no. 1/2 (2003).
[CrossRef]

Appl. Phys. Lett.

S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, �??Reversible optical structuring of polymer waveguides doped with photochromic molecules,�?? Appl. Phys. Lett. 77, 921-923 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Raman Spectrosc.

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel�??skii, Yu.N. Kondrat�??ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, J. Raman Spectrosc. �??Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,�?? 33, 888-896 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

D.A. Akimov, N.I. Koroteev, S.A. Magnitskii, A.N. Naumov, D.A. Sidorov-Biryukov, A.B. Fedotov, and A.M. Zheltikov, �??Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,�?? Jpn. J. Appl. Phys. 36, 426-428 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Science

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic bandgap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science, 288, 635-639 (2000).
[CrossRef] [PubMed]

D.A. Parthenopoulos and P.M. Rentzepis, �??Three-dimensional optical storage memory,�?? Science 245, 843-845 (1989).
[CrossRef] [PubMed]

Other

H. Dürr and H. Bouas-Laurent (Eds.), Photochromism: Molecules and Systems (Elsevier, Amsterdam, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption spectra of spiropyran molecules in form A (1) and form B (2). The inset shows the structure formula of spiropyran molecules.

Fig. 2.
Fig. 2.

Laser setup for the frequency upconversion of unamplified femtosecond Ti: sapphire laser pulses in MS fibers adapted to photochromism initiation. The inset shows a microstructure fiber frequency-converting unamplified Ti: sapphire laser pulses.

Fig. 3.
Fig. 3.

Generation of the blue (a) and green (b) anti-Stokes lines in submicron channels of a 5-cm-long MS fiber (shown in inset 1 to Fig. 3(a)) by 0.3-nJ, 80-fs pulses of 800-nm radiation. The insets show (inset 2 in Fig. 3(a)) the spectra of the blue anti-Stokes line at the input (line 1) and at the output (line 2) of the SP/PMMA sample; (inset 1 in Fig. 3(b)) decay of the PL signal, indicating the recovery of form-A spiropyran under the action of the green anti-Stokes line in the area pre-irradiated with the blue anti-Stokes line, switched off at t=0; (inset 2 in Fig. 3(b)) PL excited by the green anti-Stokes line, visualizing micromachining of a photochromic material by femtosecond Ti: sapphire laser pulses through two-photon photochromism.

Fig. 4.
Fig. 4.

Kinetics of the PL signal, visualizing the generation of form-B spiropyran in the SP/PMMA sample by the blue anti-Stokes line produced in the MS fiber. The inset shows the spectrum of PL from the blue-line-irradiated area of the SP/PMMA sample excited with 532-nm, 10-mW second-harmonic radiation of the cw Nd: YAG laser.

Metrics