Abstract

The nonlinear collective electron dynamics inside a large heated cluster irradiated by a strong linearly polarized short laser pulse are considered in the approximation of an incompressible medium. When the incident radiation frequency is near three-photon resonance with the Mie frequency, the field inside the cluster exhibits a third harmonic with an amplitude comparable with that of the fundamental. In the same parameter range, due to shielding, the field inside the cluster at the fundamental frequency is strongly reduced with respect to the incident field. The presence of the third harmonic can lead to a strong enhancement of the production of multiply charged ions. Third-harmonic generation by a cluster under the same conditions is analyzed, too.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, and M.D. Perry, �??Interaction of intense laser pulses with atomic clusters,�?? Phys. Rev. A 53, 3379-3402 (1996).
    [CrossRef] [PubMed]
  2. T. Ditmire, E. Springate, J.W.G. Tisch, Y.L. Shao, M.B. Mason, N. Hay, J.P. Marangos, and M.H.R. Hutchinson, �??Explosion of atomic clusters heated by high-intensity femtosecond laser pulses,�?? Phys. Rev. A 57, 369-382 (1998).
    [CrossRef]
  3. M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, �??Explosion dynamics of rare gas clusters in strong laser fields,�?? Phys. Rev. Lett. 80, 261-264 (1998).
    [CrossRef]
  4. A. McPherson, B.D. Thompson, A.B. Borisov, K. Boyer, and C.K. Rhodes, �??Multi-photon induced x-ray emission at 4-5 keV from Xe atoms with multiple core vacancies,�?? Nature (London) 370, 631-634 (1994).
    [CrossRef]
  5. S. Ter-Avetisyan, M. Schnürer, H. Stiel, U. Vogt,W. Radloff, W. Karpov,W. Sandner, and P.V. Nickles, �??Absolute extreme ultraviolet yield from femtosecond-laser-excited Xe clusters,�?? Phys. Rev. E 64, 036404 (1-8) (2001).
    [CrossRef]
  6. T.D. Donnelly, T. Ditmire, K. Neuman, M.D. Perry, and R.W. Falcone, �??High-order harmonic generation in atom clusters,�?? Phys. Rev. Lett. 76, 2472-2475 (1996).
    [CrossRef] [PubMed]
  7. T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, and K.B. Wharton, �??Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,�?? Nature (London) 398, 489-492 (1999).
    [CrossRef]
  8. F. Calvayrac, P.-G. Reinhard, E. Suraud, and C.A. Ullrich, �??Nonlinear electron dynamics in metal clusters,�?? Phys. Rep. 337, 493-578 (2000).
    [CrossRef]
  9. V.P. Krainov and M.B. Smirnov, �??Cluster beams in the super-intense femtosecond laser pulse,�?? Phys. Rep. 370, 237-331 (2002).
    [CrossRef]
  10. L. Köller, M. Schumacher, J. Köhn, S. Teuber, J. Tiggesbäumker, and K.H. Meiwes-Broer, �??Plasmon-enhanced multi-ionization of small metal clusters in strong femtosecond laser fields,�?? Phys. Rev. Lett. 82, 3783-3786 (1999)
    [CrossRef]
  11. I. Last and J. Jortner, �??Nuclear fusion driven by Coulomb explosion of homonuclear and heteronuclear deuteriumand tritium-containing clusters,�?? Phys. Rev. A 64, 063201 (1-11) (2001).
    [CrossRef]
  12. T. Ditmire, Y.T. Donnelly, R.W. Falcone, and M.D. Perry, �??Strong x-ray-emission from high-temperature plasmas produced by intense irradiation of clusters,�?? Phys. Rev. Lett. 75, 3122-3125 (1995).
    [CrossRef] [PubMed]
  13. E. M. Snyder, S. A. Buzza, and A.W. Castleman, Jr. �??Intense field-matter interactions: multiple ionization of clusters,�?? Phys. Rev. Lett. 77, 3347-3350 (1996).
    [CrossRef] [PubMed]
  14. K. Boyer, B.D. Thompson, A. McPherson, and C.K. Rhodes, �??Evidence for coherent electron motions in multiphoton X-ray production from Kr and Xe clusters,�?? J. Phys. B 27, 4373-4389 (1994).
    [CrossRef]
  15. C. Rose-Petruck, K.J. Schafer, K.R. Wilson, and C.P.J. Barty, �??Ultrafast electron dynamics and inner-shell ionization in laser driven clusters,�?? Phys. Rev. A 55, 1182-1190 (1997).
    [CrossRef]
  16. I. Last and J. Jortner, �??Dynamics of the Coulomb explosion of large clusters in a strong laser field,�?? Phys. Rev. A 62, 013201 (1-9) (2000).
    [CrossRef]
  17. K. Ishikawa and T. Blenski, �??Explosion dynamics of rare-gas clusters in an intense laser field,�?? Phys. Rev. A 62, 063204 (1-11) (2000).
    [CrossRef]
  18. J.-P. Connerade and A. V. Solov�??yov, �??Formalism for multiphoton plasmon excitation in jellium clusters,�?? Phys. Rev. A 66, 013207 (1-16) (2002).
    [CrossRef]
  19. P. B. Parks, T.E. Cowan, R.B. Stephens, and E.M. Campbell, �??Model of neutron-production rates from femtosecond-laser�??cluster interactions,�?? Phys. Rev. A 63, 063203 (1-12) (2001).
    [CrossRef]
  20. J. Liu, R. Li, P. Zhu, Z. Xu, and J. Liu, �??Modified hydrodynamic model and its application in the investigation of laser-cluster interactions,�?? Phys. Rev. A 64, 033426 (1-7) (2001).
    [CrossRef]
  21. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  22. F. Megi, M. Belkacem, M. A. Bouchene, E. Suraud, and G. Zwicknagel, �??On the importance of damping phenomena in clusters irradiated by intense laser fields,�?? J. Phys. B 36, 273-282 (2003).
    [CrossRef]
  23. S. V. Fomichev and D. F. Zaretsky, �??Vlasov theory of Mie resonance broadening in metal clusters,�?? J. Phys. B 32, 5083-5102 (1999).
    [CrossRef]
  24. S.V. Fomichev, S.V. Popruzhenko, D.F. Zaretsky, and W. Becker, �??Laser-induced nonlinear excitation of collective electron motion in a cluster,�?? J. Phys. B 36, 3817-3834 (2003).
    [CrossRef]
  25. L. G. Gerchikov, C. Guet, and A.N. Ipatov, �??Multiple plasmons and anharmonic effects in small metallic clusters,�?? Phys. Rev. A 66, 053202 (1-8) (2002).
    [CrossRef]
  26. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, 1983).
  27. F. Hache, D. Ricard, and C. Flytzanis, �??Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,�?? J. Opt. Soc. Am. B 3, 1647-1655 (1986).
    [CrossRef]
  28. J.P. Dewitz, W. H¨ubner, and K.H. Bennemann, �??Theory for nonlinear Mie-scattering from spherical metal clusters,�?? Z. Phys. D 37, 75-84 (1996).
    [CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

F. Megi, M. Belkacem, M. A. Bouchene, E. Suraud, and G. Zwicknagel, �??On the importance of damping phenomena in clusters irradiated by intense laser fields,�?? J. Phys. B 36, 273-282 (2003).
[CrossRef]

S. V. Fomichev and D. F. Zaretsky, �??Vlasov theory of Mie resonance broadening in metal clusters,�?? J. Phys. B 32, 5083-5102 (1999).
[CrossRef]

S.V. Fomichev, S.V. Popruzhenko, D.F. Zaretsky, and W. Becker, �??Laser-induced nonlinear excitation of collective electron motion in a cluster,�?? J. Phys. B 36, 3817-3834 (2003).
[CrossRef]

K. Boyer, B.D. Thompson, A. McPherson, and C.K. Rhodes, �??Evidence for coherent electron motions in multiphoton X-ray production from Kr and Xe clusters,�?? J. Phys. B 27, 4373-4389 (1994).
[CrossRef]

Nature (London)

A. McPherson, B.D. Thompson, A.B. Borisov, K. Boyer, and C.K. Rhodes, �??Multi-photon induced x-ray emission at 4-5 keV from Xe atoms with multiple core vacancies,�?? Nature (London) 370, 631-634 (1994).
[CrossRef]

T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, and K.B. Wharton, �??Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,�?? Nature (London) 398, 489-492 (1999).
[CrossRef]

Phys. Rep.

F. Calvayrac, P.-G. Reinhard, E. Suraud, and C.A. Ullrich, �??Nonlinear electron dynamics in metal clusters,�?? Phys. Rep. 337, 493-578 (2000).
[CrossRef]

V.P. Krainov and M.B. Smirnov, �??Cluster beams in the super-intense femtosecond laser pulse,�?? Phys. Rep. 370, 237-331 (2002).
[CrossRef]

Phys. Rev. A

T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, and M.D. Perry, �??Interaction of intense laser pulses with atomic clusters,�?? Phys. Rev. A 53, 3379-3402 (1996).
[CrossRef] [PubMed]

T. Ditmire, E. Springate, J.W.G. Tisch, Y.L. Shao, M.B. Mason, N. Hay, J.P. Marangos, and M.H.R. Hutchinson, �??Explosion of atomic clusters heated by high-intensity femtosecond laser pulses,�?? Phys. Rev. A 57, 369-382 (1998).
[CrossRef]

C. Rose-Petruck, K.J. Schafer, K.R. Wilson, and C.P.J. Barty, �??Ultrafast electron dynamics and inner-shell ionization in laser driven clusters,�?? Phys. Rev. A 55, 1182-1190 (1997).
[CrossRef]

I. Last and J. Jortner, �??Dynamics of the Coulomb explosion of large clusters in a strong laser field,�?? Phys. Rev. A 62, 013201 (1-9) (2000).
[CrossRef]

K. Ishikawa and T. Blenski, �??Explosion dynamics of rare-gas clusters in an intense laser field,�?? Phys. Rev. A 62, 063204 (1-11) (2000).
[CrossRef]

J.-P. Connerade and A. V. Solov�??yov, �??Formalism for multiphoton plasmon excitation in jellium clusters,�?? Phys. Rev. A 66, 013207 (1-16) (2002).
[CrossRef]

P. B. Parks, T.E. Cowan, R.B. Stephens, and E.M. Campbell, �??Model of neutron-production rates from femtosecond-laser�??cluster interactions,�?? Phys. Rev. A 63, 063203 (1-12) (2001).
[CrossRef]

J. Liu, R. Li, P. Zhu, Z. Xu, and J. Liu, �??Modified hydrodynamic model and its application in the investigation of laser-cluster interactions,�?? Phys. Rev. A 64, 033426 (1-7) (2001).
[CrossRef]

L. G. Gerchikov, C. Guet, and A.N. Ipatov, �??Multiple plasmons and anharmonic effects in small metallic clusters,�?? Phys. Rev. A 66, 053202 (1-8) (2002).
[CrossRef]

I. Last and J. Jortner, �??Nuclear fusion driven by Coulomb explosion of homonuclear and heteronuclear deuteriumand tritium-containing clusters,�?? Phys. Rev. A 64, 063201 (1-11) (2001).
[CrossRef]

Phys. Rev. E

S. Ter-Avetisyan, M. Schnürer, H. Stiel, U. Vogt,W. Radloff, W. Karpov,W. Sandner, and P.V. Nickles, �??Absolute extreme ultraviolet yield from femtosecond-laser-excited Xe clusters,�?? Phys. Rev. E 64, 036404 (1-8) (2001).
[CrossRef]

Phys. Rev. Lett.

T.D. Donnelly, T. Ditmire, K. Neuman, M.D. Perry, and R.W. Falcone, �??High-order harmonic generation in atom clusters,�?? Phys. Rev. Lett. 76, 2472-2475 (1996).
[CrossRef] [PubMed]

M. Lezius, S. Dobosz, D. Normand, and M. Schmidt, �??Explosion dynamics of rare gas clusters in strong laser fields,�?? Phys. Rev. Lett. 80, 261-264 (1998).
[CrossRef]

L. Köller, M. Schumacher, J. Köhn, S. Teuber, J. Tiggesbäumker, and K.H. Meiwes-Broer, �??Plasmon-enhanced multi-ionization of small metal clusters in strong femtosecond laser fields,�?? Phys. Rev. Lett. 82, 3783-3786 (1999)
[CrossRef]

T. Ditmire, Y.T. Donnelly, R.W. Falcone, and M.D. Perry, �??Strong x-ray-emission from high-temperature plasmas produced by intense irradiation of clusters,�?? Phys. Rev. Lett. 75, 3122-3125 (1995).
[CrossRef] [PubMed]

E. M. Snyder, S. A. Buzza, and A.W. Castleman, Jr. �??Intense field-matter interactions: multiple ionization of clusters,�?? Phys. Rev. Lett. 77, 3347-3350 (1996).
[CrossRef] [PubMed]

Z. Phys. D

J.P. Dewitz, W. H¨ubner, and K.H. Bennemann, �??Theory for nonlinear Mie-scattering from spherical metal clusters,�?? Z. Phys. D 37, 75-84 (1996).
[CrossRef]

Other

A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, 1983).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Relative peak values of the electric-field envelopes at the fundamental frequency and at the third harmonic inside the cluster, Eω0 /E 0 (dashed curves) and E3ω0/E 0 (solid curves), extracted from a numerical solution of Eq. (4), versus the frequency ratio β=ωM /ω, in the third-order resonance range. The value of k corresponds to the cluster ionization degree η=0.3. The other parameters are: Ti:Sa laser, R=50 Å, Γ=0.1eV, τ=100fs, I=1016 (a) and 3×1016 W/cm2 (b).

Fig. 2.
Fig. 2.

Total production probability w 3ω and wω of Ar n+ ions inside the cluster (n is given next to the curves) by the third-harmonic (a), and by the fundamental (b), respectively, calculated according to the Coulomb-corrected Keldysh formula with the time-dependent envelopes, as a function of β=ωM /ω. The incoming laser intensity is 3×1016 W/cm2, corresponding to part (b) of Fig. 1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n e t + · ( v n e ) = 0 , v t + ( v · ) v = 1 m e F ,
m e x ̈ = F L ( t ) + 1 N e F ei ( x ) ,
F ei ( x ) = x { e d 3 r ϕ i ( 0 ) ( r ) n e 0 ( r x ) }
x ̈ + 2 Γ x ̇ + ω M 2 x 3 10 ω M 2 k R 2 ( 1 η ) x x 2 = e m e E L ( t ) ,
x 0 = ( e E 0 m e ω 2 ) [ ( β 2 1 ) 2 + 4 Γ 2 ω 2 ] 1 2 ,
2 ϕ 0 ( r ) = 4 π e [ z i n i 0 ( r ) n e 0 ( r ) ] , n e 0 ( r ) = n e 0 ( R ) exp { e [ ϕ 0 ( r ) ϕ 0 ( R ) ] T } ,
σ ( ω 3 ω ) = 8 π r 0 2 3 ( e 2 h ¯ ω ) 8 ( a B R ) 4 ( 27 k β 2 40 ( 1 η ) ( β 2 1 ) 3 ) 2 N e 2 ( I I at ) 2 [ ( β 2 β r 2 ) 2 + 36 Γ 2 ω 2 ] ,

Metrics