Abstract

We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. X. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794</a>
    [CrossRef] [PubMed]
  2. V. X. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt.Express 11, 1650-1658 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650</a>
    [CrossRef] [PubMed]
  3. D. Huang, E.A. Swanson, C. P. Lin, J.S.Schuman, W.G. Stinson, W.Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-81 (1991).
    [CrossRef] [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, �??In vivo endoscopic optical biopsy with optical coherence tomography,�?? Science 276, 2037-9 (1997)
    [CrossRef] [PubMed]
  5. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., and J. A. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure using endoscopic optical coherence tomography with a novel efficient interferometer design," Opt. Lett. 24, 1358-60 (1999).
    [CrossRef]
  6. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. V. Kuranov, A. M. Sergeev, N. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Terent'eva, E. V. Zagainova, Y. P. Chumakov, and I. A. Kuznetzova, "Endoscopic applications of optical coherence tomography," Opt. Express 3, 257-70 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-257">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-257</a>
    [CrossRef] [PubMed]
  7. B. E. Bouma and G. J. Tearney, �??Power-efficient nonreciprocal interferometer and linear-scanning fiberoptic catheter for optical coherence tomography,�?? Opt. Lett. 24, 531-3 (1999).
    [CrossRef]
  8. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, �??Diagnosis of specialized intestinal metaplasia by optical coherence tomography,�?? Gastroenterology 120, 7-12 (2001).
    [CrossRef] [PubMed]
  9. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,�?? Opt. Lett. 25, 1448-50 (2000).
    [CrossRef]
  10. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, �??Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,�?? Opt. Lett. 25, 114�??116 (2000).
    [CrossRef]
  11. X. Li, T. H. Ko, and J. G. Fujimoto, �??Intraluminal fiber-optic Doppler imaging catheter for structural and functional optical coherence tomography,�?? Opt. Lett. 26, 1906-08 (2001).
    [CrossRef]
  12. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, I. A. Vitkin, "Improved phased-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opto. Commun. 208, 209-214, (2002).
    [CrossRef]
  13. V. X. Yang, M. L. Gordon, B. Qi, E. S. Yue, S. Tang, S. K. Bisland, J. Pekar, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, �??High sensitivity detection and monitoring of microcirculation using cutaneous and catheter probes for Doppler optical coherence tomography,�?? Proc. SPIE 4965, 153-159 (2003).
    [CrossRef]
  14. V. X. Yang, B.Qi, M. L. Gordon, E. Seng-Yue, S. Tang, N. E. Marcon, I. A. Vitkin, B. C. Wilson, �??In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography,�?? Digestive Disease Week Proceedings, Gastroenterology 124, Suppl.-1, A49 (2003).
  15. J.A.Jensen, Estimation of blood velocities using ultrasound (Cambridge, 1996).
  16. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??Ultrahigh velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography,�?? Proc. SPIE 4251, 156-164 (2001).
    [CrossRef]

Gastroenterology (2)

J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, �??Diagnosis of specialized intestinal metaplasia by optical coherence tomography,�?? Gastroenterology 120, 7-12 (2001).
[CrossRef] [PubMed]

V. X. Yang, B.Qi, M. L. Gordon, E. Seng-Yue, S. Tang, N. E. Marcon, I. A. Vitkin, B. C. Wilson, �??In vivo feasibility of endoscopic catheter-based Doppler optical coherence tomography,�?? Digestive Disease Week Proceedings, Gastroenterology 124, Suppl.-1, A49 (2003).

Opt. Commun. (1)

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, I. A. Vitkin, "Improved phased-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opto. Commun. 208, 209-214, (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Proc. SPIE (2)

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??Ultrahigh velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography,�?? Proc. SPIE 4251, 156-164 (2001).
[CrossRef]

V. X. Yang, M. L. Gordon, B. Qi, E. S. Yue, S. Tang, S. K. Bisland, J. Pekar, S. Lo, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, �??High sensitivity detection and monitoring of microcirculation using cutaneous and catheter probes for Doppler optical coherence tomography,�?? Proc. SPIE 4965, 153-159 (2003).
[CrossRef]

Science (2)

D. Huang, E.A. Swanson, C. P. Lin, J.S.Schuman, W.G. Stinson, W.Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-81 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, �??In vivo endoscopic optical biopsy with optical coherence tomography,�?? Science 276, 2037-9 (1997)
[CrossRef] [PubMed]

Other (1)

J.A.Jensen, Estimation of blood velocities using ultrasound (Cambridge, 1996).

Supplementary Material (2)

» Media 1: MOV (289 KB)     
» Media 2: MOV (392 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the mechanical assembly for the linear scanning catheter. (a) Top-view. (b) Side-view. This assembly is mounted on the endoscope, as shown in (c).

Fig. 2.
Fig. 2.

Modified saw-tooth driving waveform for the linear scanning catheter. Part-1 pushes the fiber and part-2 starts the pullback motion. Images are acquired during the steady pullback motion of part-3.

Fig. 3.
Fig. 3.

Schematic of the EDOCT catheter distal end. (a) The fiber termination with GRIN lens and right-angle prism. The terminated fiber can slide within either a steel cap, with the optical beam passing through one of the slots (b); or within a transparent plastic cover (c). Imaging is performed with the catheter in gentle contact with the esophageal wall (d).

Fig. 4.
Fig. 4.

EDOCT image sequence [289 kB], showing blood flow in a submucosal blood vessel in rat esophagus. Frame acquisition time=1 second. (a) Structural image. (b) Color-Doppler image showing the mean Doppler shift. (c) Normalized velocity variance image. (d) Composite image with the velocity variance overlaid on the structural image. Bar=500 µm.

Fig. 5.
Fig. 5.

M-mode EDOCT image showing the pulsatile blood flow in a major blood vessel in the close vicinity of the rat esophagus. (a) Structural image. (b) Color-Doppler image showing the mean Doppler shift. (c) Normalized velocity variance image. The yellow horizontal line indicates the depth from which Doppler spectrum information is processed (see Fig.6).

Fig. 6.
Fig. 6.

Doppler spectrum corresponding to Fig.5, demonstrating the EDOCT system’s ability to detect the pulsatile blood flow velocity distribution in the rat. High speed blood flow at the beginning of the pulse caused significant aliasing (arrows), consistent with Fig.5(b). The Doppler spectrum is also presented in audio format [393 kB].

Fig. 7.
Fig. 7.

Example EDOCT images of normal human esophagi from different patients, with the velocity variance information overlaid on the structural images in (a) and (b), and the mean Doppler shift overlaid in (c) and (d). Note the clearly delineated layers of normal esophagus: ep - epithelium, lp - lamina propria, mm - muscularis mucosa, sm - submucosa, and mp - muscularis mucosa. Note the high velocity blood flow in the small vessel in (c), which was probably a small artery (A), as indicated by the aliased color-ring. The adjacent larger vessel is probably a vein (V).

Metrics