Abstract

We report on polymer liquid crystals with periodically oriented mesogenic side chains and demonstrate that the resulting two-dimensional polarization gratings multiplex-diffract the laser beam and convert the polarization state at the same time. Two-dimensional diffraction patterns with various kinds of polarization states can be successfully generated by designing a combination of one-dimensional polarization gratings. This study is a considerable advance towards the realization of highly functionalized passive optical devices that can control both the beam propagation direction and the polarization state.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Ikeda and O. Tsutsumi, �??Optical switching and image storage by means of azobenzene liquid-crystal films,�?? Science 268, 1873-1875 (1995).
    [CrossRef] [PubMed]
  2. G. Iftime, F. L. Labarthet, A. Nathansohn and P. Rochon, �??Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,�?? J. Am. Chem. Soc. 122, 12646-12650 (2000).
    [CrossRef]
  3. S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono and T. Ikeda, �??High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,�?? Macromolecules 35, 8751-8758 (2002).
    [CrossRef]
  4. V. Shibaev, A. Bobrovsky and N. Boiko, �??Light-responsive chiral photochromic liquid crystalline polymer systems,�?? J. Photochemistry and Photobiology A: Chemistry 155, 3-19 (2003).
    [CrossRef]
  5. N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, �??Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,�?? Macromolecules 33, 1698-1702 (2000).
    [CrossRef]
  6. N. Kawatsuki, M. Hayashi and T. Yamamoto, �??Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,�?? Macromol. Chem. Phys. 202, 3087 (2001).
    [CrossRef]
  7. N. Kawatsuki, K. Goto, T. Kawakami and T. Yamamoto, �??Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,�?? Macromolecules 35, 706-713 (2002).
    [CrossRef]
  8. T. D. Ebralidze, �??Model of an anisotropic diffraction grating,�?? Opt. Spektrosk. 53, 944-946 (1982).
  9. L. Nikolova and T. Todorov, �??Diffraction efficiency and selectivity of polarization holographic recording,�?? Optica Acta 31, 579-588 (1984).
    [CrossRef]
  10. L. Nikolova, K. Stoyanova and T. Todorov, �??Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,�?? Opt. Commun. 64, 75-80 (1987).
    [CrossRef]
  11. C. Solano, R. A. Lessard and P. C. Roberge, �??Methylene blue-sensitized gelatin as a photosensitive medium for conventional and polarization holography,�?? Appl. Opt. 26, 1989-1997 (1987).
    [CrossRef] [PubMed]
  12. P. Rochon, J. Gosselin, A. Nathansohn and S. Xie, �??Optically induced and erased birefringence and dichroism in azoaromatic polymers, Appl. Phys. Lett. 60, 4-5 (1992).
    [CrossRef]
  13. T. D. Ebralidze and N. A. Ebralidze, �??Hologram recording by means of film anisotropy photoinduction,�?? Appl. Opt. 31, 4720-4724 (1992).
    [CrossRef] [PubMed]
  14. T. D. Ebralidze, �??Weigert hologram,�?? Appl. Opt. 34, 1357-1362 (1995).
    [CrossRef] [PubMed]
  15. H. Akiyama, K. Kudo and K. Ichimura, �??Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,�?? Macromol. Rapid. Commun. 16, 35-41 (1995).
    [CrossRef]
  16. L. Nikolova, M. Todorov, M. Ivanov, F. Andruzzi, �??S. Hvisted and P. S. Ramanujam, Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,�?? Appl. Opt. 35, 3835-3840 (1996).
    [CrossRef] [PubMed]
  17. I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted and P. S. Ramanujam, �??Polarimetric investigation of materials with both linear and circular anisotropy,�?? J. Mod. Opt. 44, 1643-1650 (1997).
    [CrossRef]
  18. F. L. Labarthet, T. Buffeteau and C. Sourisseau, �??Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,�?? J. Phys. Chem. B 102, 2654-2662 (1998).
    [CrossRef]
  19. T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono and T. Ikeda, �??Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,�?? J. Phys. Chem. B 103, 9873-9878 (1999).
    [CrossRef]
  20. M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura and J. Stumpe, �??Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,�?? Appl. Phys. Lett. 76, 1377-1379 (2000).
    [CrossRef]
  21. G. Cipparrone, A. Mazzulla and L. M. Blinov, �??Permanent polarization gratings in photosensitive Langmuir-Blodgett films for polarimetric applications,�?? J. Opt. Soc. Am. B 19, 1157-1161 (2002).
    [CrossRef]
  22. A. Gerrard and J. M. Burch, Introduction to Matrix Method in Optics. 179-262 (Dover Publications, Inc. New York, 1994).
  23. H. Ono, A. Emoto, N. Kawatsuki and T. Hasegawa, �??Self-organized phase gratings in photoreactive polymer liquid crystals,�?? Appl. Phys. Lett. 82, 1359-1361 (2003).
    [CrossRef]
  24. N. Kawatsuki, T. Hasegawa, and H. Ono and T. Tamoto, �??Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,�?? Adv. Mater. 15, 991-994 (2003).
    [CrossRef]
  25. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki and T. Hasegawa, �??Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,�?? J. Appl. Phys. 94, 1298-1303 (2003).
    [CrossRef]

Adv. Mater.

N. Kawatsuki, T. Hasegawa, and H. Ono and T. Tamoto, �??Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,�?? Adv. Mater. 15, 991-994 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Rochon, J. Gosselin, A. Nathansohn and S. Xie, �??Optically induced and erased birefringence and dichroism in azoaromatic polymers, Appl. Phys. Lett. 60, 4-5 (1992).
[CrossRef]

M. Kidowaki, T. Fujiwara, S. Morino, K. Ichimura and J. Stumpe, �??Thermal amplification of photo-induced optical anisotropy of p-cyanoazobenzene polymer films monitored by temperature scanning ellipsometry,�?? Appl. Phys. Lett. 76, 1377-1379 (2000).
[CrossRef]

H. Ono, A. Emoto, N. Kawatsuki and T. Hasegawa, �??Self-organized phase gratings in photoreactive polymer liquid crystals,�?? Appl. Phys. Lett. 82, 1359-1361 (2003).
[CrossRef]

J. Am. Chem. Soc.

G. Iftime, F. L. Labarthet, A. Nathansohn and P. Rochon, �??Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light,�?? J. Am. Chem. Soc. 122, 12646-12650 (2000).
[CrossRef]

J. Appl. Phys.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki and T. Hasegawa, �??Highly stable polarization gratings in photo-cross-linkable polymer liquid crystals,�?? J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

J. Mod. Opt.

I. Naydenova, T. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted and P. S. Ramanujam, �??Polarimetric investigation of materials with both linear and circular anisotropy,�?? J. Mod. Opt. 44, 1643-1650 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochemistry & Photobiology A: Chem

V. Shibaev, A. Bobrovsky and N. Boiko, �??Light-responsive chiral photochromic liquid crystalline polymer systems,�?? J. Photochemistry and Photobiology A: Chemistry 155, 3-19 (2003).
[CrossRef]

J. Phys. Chem. B

F. L. Labarthet, T. Buffeteau and C. Sourisseau, �??Analysis of the diffraction efficiencies, birefringence, and surface relief gratings on azobenzene-containing polymer films,�?? J. Phys. Chem. B 102, 2654-2662 (1998).
[CrossRef]

T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono and T. Ikeda, �??Phase-type gratings formed by photochemical phase transition of polymer azobenzene liquid crystals,�?? J. Phys. Chem. B 103, 9873-9878 (1999).
[CrossRef]

Macromol. Chem. Phys.

N. Kawatsuki, M. Hayashi and T. Yamamoto, �??Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet light irradiation and annealing: effect of heating rate,�?? Macromol. Chem. Phys. 202, 3087 (2001).
[CrossRef]

Macromol. Rapid. Commun.

H. Akiyama, K. Kudo and K. Ichimura, �??Novel polymethacrylate with latrerally attached azobenzene groups displaying photoinduced optical anisotropy,�?? Macromol. Rapid. Commun. 16, 35-41 (1995).
[CrossRef]

Macromolecules

N. Kawatsuki, K. Goto, T. Kawakami and T. Yamamoto, �??Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystals,�?? Macromolecules 35, 706-713 (2002).
[CrossRef]

N. Kawatsuki, K. Matsuyoshi, and T. Yamamoto, �??Alignment of photo-cross-linkable copolymer liquid crystals induced by linearly polarized ultraviolet irradiation and thermal treatment,�?? Macromolecules 33, 1698-1702 (2000).
[CrossRef]

S. Yoneyama, T. Yamamoto, O. Tsutsumi, A. Kanazawa, T. Shiono and T. Ikeda, �??High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence,�?? Macromolecules 35, 8751-8758 (2002).
[CrossRef]

Opt. Commun.

L. Nikolova, K. Stoyanova and T. Todorov, �??Polarization wavefront conjugation by means of transient holograms in rigid dye solutions,�?? Opt. Commun. 64, 75-80 (1987).
[CrossRef]

Opt. Spektrosk.

T. D. Ebralidze, �??Model of an anisotropic diffraction grating,�?? Opt. Spektrosk. 53, 944-946 (1982).

Optica Acta

L. Nikolova and T. Todorov, �??Diffraction efficiency and selectivity of polarization holographic recording,�?? Optica Acta 31, 579-588 (1984).
[CrossRef]

Science

T. Ikeda and O. Tsutsumi, �??Optical switching and image storage by means of azobenzene liquid-crystal films,�?? Science 268, 1873-1875 (1995).
[CrossRef] [PubMed]

Other

A. Gerrard and J. M. Burch, Introduction to Matrix Method in Optics. 179-262 (Dover Publications, Inc. New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Typical examples of the diffraction patterns passed through one-dimensional gratings. The gratings were written using two orthogonally polarized (OL; orthogonal linear and OC: orthogonal circular), mutually coherent ultraviolet laser beams. In each picture, the polarization states are shown at the top, the diffraction patterns are shown in the middle, and the polar plots are shown at the bottom. (a), Diffraction pattern from the gratings formed by OL exposure. The reading beam is linearly s-polarized. (b), Diffraction pattern from the gratings formed by OC exposure. The reading beam is linearly p-polarized. (c), Diffraction pattern from the gratings formed by OC exposure. The reading beam is right-hand circularly polarized.

Fig. 2.
Fig. 2.

Diffraction patterns passed through the crossed gratings formed by overwriting the same polarization gratings. The grating vectors are slanted with 0, 45, 90, 135 degrees with reference to the horizon. The gratings were written using two orthogonally polarized (OL; orthogonal linear and OC: orthogonal circular), mutually coherent ultraviolet laser beams. In each picture, polarization state of each diffraction spot is schematically presented by an arrow. (a), Diffraction pattern from the crossed gratings consisting of four OL gratings. The reading beam is linearly polarized and the polarization direction is slanted with 40 degrees. (b), Diffraction pattern from the crossed gratings consisting of four OC gratings. The reading beam is linearly s-polarized. (c), Diffraction pattern from the crossed gratings consisting of four OC gratings. The reading beam is right-hand circularly polarized.

Fig. 3.
Fig. 3.

Diffraction patterns passed through the crossed gratings formed by alternately overwriting the orthogonal linear (OL) and orthogonal circular (OC) gratings. The grating vectors are slanted with 0, 45, 90, 135 degrees with reference to the horizon. In each picture, the polarization state of each diffraction spot is schematically presented by an arrow. (a), The reading beam is linearly s-polarized and the polarization direction is slanted with 40 degrees. (b), The reading beam is right-hand circularly polarized.

Tables (2)

Tables Icon

Table 1. Types of polarization modulation in recording with two waves with orthogonal polarization.

Tables Icon

Table 2. Summarize of theoretical calculations for the polarization states of the diffracted beams on varying polarization state of the reading beam.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = ( E cos δ iE cos δ ) ,
δ = 2 π x Λ .
E = ( E cos δ E sin δ ) .
T = ( e i ( cos δ ) Δ φ 0 0 e i ( cos δ ) Δ φ ) ,
T = ( cos Δ φ + i sin Δ φ cos δ i sin Δ φ sin δ i sin Δ φ sin δ cos Δ φ i sin Δ φ cos δ ) ,
S = T · R ,

Metrics