Abstract

X-ray interferometry for imaging applications is discussed with a review of X-ray interferometric imaging activities reported to date. Phase measurement and phase tomography based on X-ray interferometry are also presented. Finally the advantage of X-ray interferometric imaging in comparison with other phase-sensitive X-ray imaging methods is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22, 375–380 (1995).
    [CrossRef] [PubMed]
  2. A. Authier, Dynamical theory of X-ray diffraction (Oxford, New York, 2001).
  3. U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6, 155–156 (1965).
    [CrossRef]
  4. A. Momose, “Demonstration of phase-contrast X-ray computed tomography using an x-ray interferometer,” Nucl. Instrum. & Methods A 352, 622–628 (1995).
    [CrossRef]
  5. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
    [CrossRef] [PubMed]
  6. T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
    [PubMed]
  7. A. Momose, T. Takeda, and Y. Itai, “Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat—feasibility study,” Radiology 217, 593–596 (2000).
    [PubMed]
  8. P. Becker and U. Bonse, “The skew-symmetric two-crystal X-ray interferometer,” J. Appl. Crystallogr. 7, 593–598 (1974).
    [CrossRef]
  9. A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
    [CrossRef]
  10. A. Momose and K. Hirano, “The possibility of phase-contrast X-ray microtomography,” Jpn. J. Appl. Phys. 38, Suppl. 38-1, 625–629 (1999).
  11. A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).
  12. U. Bonse and M. Hart, “An X-ray interferometer with Bragg case beam splitting and beam recombination,” Z. Physik 194, 1–17 (1966).
    [CrossRef]
  13. I. Koyama, H. Yoshikawa, and A. Momose, “Phase-contrast X-ray imaging with a triple-Bragg-case interferometer,” Jpn. J. Appl. Phys. 42, 80–82 (2003).
    [CrossRef]
  14. Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
    [CrossRef]
  15. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
    [CrossRef]
  16. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
    [CrossRef]
  17. H. Talbot, “Facts relating to optical science,” Phil. Mag. 9, 401–407 (1836).
  18. G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.
  19. Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).
  20. I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
    [CrossRef] [PubMed]
  21. W. Leitenberger and A. Snigirev, “Microscopic imaging with high energy X-rays by Fourier transform holography,” J. Appl. Phys. 90, 538–544 (2001).
    [CrossRef]
  22. N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).
  23. B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B. Fayard, and J. Susini, “Differential interferometric contrast X-ray microscopy with twin zone plates,” J. Opt. Soc. Am. A 19, 797–806 (2002).
    [CrossRef]
  24. P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, and J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
    [CrossRef]
  25. L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
    [CrossRef] [PubMed]
  26. J. Filevich, K. Kanizay, M. C. Morconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude division soft X-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
    [CrossRef]
  27. F. Delmotte, M.-F. Ravet, F. Bridou, F. Varnière, P. Zeitoun, S. Hubert, L. Vanbostal, and G. Soullie, “X-ray-ultraviolet beam splitters for the Michelson interferometer,” Appl. Opt. 41, 5905–5912 (2002).
    [CrossRef] [PubMed]
  28. K. Tamasaku, M. Yabashi, and T. Ishikawa, “X-ray interferometry with multicrystal components using intensity correlation,” Phys. Rev. Lett. 88, 044801 (2002).
    [CrossRef] [PubMed]
  29. D. Joyeux and F. Polack, “Carbon index measurement near K edge, by interferometry with optoelectronic detection,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, and E. Umbach, eds., (Springer, Berlin, 1998), pp. II.103–II.112.
  30. D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
    [CrossRef]
  31. W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
    [CrossRef] [PubMed]
  32. T. Haga, H. Takenaka, and M. Fukuda, “At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope,” J. Vac. Sci. Technol. B 18, 2916–2920 (2000).
    [CrossRef]
  33. A. Momose, “Phase-contrast X-ray imaging based on interferometry,” J. Synchrotron Rad. 9, 136–142 (2002).
    [CrossRef]
  34. T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
    [CrossRef] [PubMed]
  35. S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [CrossRef]
  36. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
    [CrossRef]
  37. P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
    [CrossRef]
  38. K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” in Physics Today (AIP, August 2001) pp. 27–32.
  39. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
    [CrossRef]
  40. I. V. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D: Appl. Phys. 28, 2314–2317 (1995).
    [CrossRef]
  41. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
    [CrossRef] [PubMed]

2003 (6)

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

I. Koyama, H. Yoshikawa, and A. Momose, “Phase-contrast X-ray imaging with a triple-Bragg-case interferometer,” Jpn. J. Appl. Phys. 42, 80–82 (2003).
[CrossRef]

Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
[CrossRef]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

2002 (7)

B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B. Fayard, and J. Susini, “Differential interferometric contrast X-ray microscopy with twin zone plates,” J. Opt. Soc. Am. A 19, 797–806 (2002).
[CrossRef]

F. Delmotte, M.-F. Ravet, F. Bridou, F. Varnière, P. Zeitoun, S. Hubert, L. Vanbostal, and G. Soullie, “X-ray-ultraviolet beam splitters for the Michelson interferometer,” Appl. Opt. 41, 5905–5912 (2002).
[CrossRef] [PubMed]

K. Tamasaku, M. Yabashi, and T. Ishikawa, “X-ray interferometry with multicrystal components using intensity correlation,” Phys. Rev. Lett. 88, 044801 (2002).
[CrossRef] [PubMed]

A. Momose, “Phase-contrast X-ray imaging based on interferometry,” J. Synchrotron Rad. 9, 136–142 (2002).
[CrossRef]

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
[CrossRef]

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

2001 (1)

W. Leitenberger and A. Snigirev, “Microscopic imaging with high energy X-rays by Fourier transform holography,” J. Appl. Phys. 90, 538–544 (2001).
[CrossRef]

2000 (6)

J. Filevich, K. Kanizay, M. C. Morconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude division soft X-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25, 356–358 (2000).
[CrossRef]

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
[CrossRef] [PubMed]

T. Haga, H. Takenaka, and M. Fukuda, “At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope,” J. Vac. Sci. Technol. B 18, 2916–2920 (2000).
[CrossRef]

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

A. Momose, T. Takeda, and Y. Itai, “Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat—feasibility study,” Radiology 217, 593–596 (2000).
[PubMed]

1999 (3)

A. Momose and K. Hirano, “The possibility of phase-contrast X-ray microtomography,” Jpn. J. Appl. Phys. 38, Suppl. 38-1, 625–629 (1999).

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, and J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
[CrossRef]

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

1997 (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

1996 (2)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

1995 (6)

A. Momose, “Demonstration of phase-contrast X-ray computed tomography using an x-ray interferometer,” Nucl. Instrum. & Methods A 352, 622–628 (1995).
[CrossRef]

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22, 375–380 (1995).
[CrossRef] [PubMed]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

I. V. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D: Appl. Phys. 28, 2314–2317 (1995).
[CrossRef]

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

1992 (1)

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

1974 (1)

P. Becker and U. Bonse, “The skew-symmetric two-crystal X-ray interferometer,” J. Appl. Crystallogr. 7, 593–598 (1974).
[CrossRef]

1966 (1)

U. Bonse and M. Hart, “An X-ray interferometer with Bragg case beam splitting and beam recombination,” Z. Physik 194, 1–17 (1966).
[CrossRef]

1965 (1)

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6, 155–156 (1965).
[CrossRef]

1836 (1)

H. Talbot, “Facts relating to optical science,” Phil. Mag. 9, 401–407 (1836).

Altissimo, M.

Anderson, E. H.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Aoki, A.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Arfelli, F.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Attwood, D.

Authier, A.

A. Authier, Dynamical theory of X-ray diffraction (Oxford, New York, 2001).

Barbee, Jr., T. W.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Baruchel, J.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Béchir, E.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Becker, P.

P. Becker and U. Bonse, “The skew-symmetric two-crystal X-ray interferometer,” J. Appl. Crystallogr. 7, 593–598 (1974).
[CrossRef]

Beliaevskaya, E. A.

I. V. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D: Appl. Phys. 28, 2314–2317 (1995).
[CrossRef]

Bokor, J.

Bonse, U.

P. Becker and U. Bonse, “The skew-symmetric two-crystal X-ray interferometer,” J. Appl. Crystallogr. 7, 593–598 (1974).
[CrossRef]

U. Bonse and M. Hart, “An X-ray interferometer with Bragg case beam splitting and beam recombination,” Z. Physik 194, 1–17 (1966).
[CrossRef]

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6, 155–156 (1965).
[CrossRef]

Bridou, F.

Cabrini, S.

Carillon, A.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Cash, W.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
[CrossRef] [PubMed]

Cauble, R.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Celliers, P.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Chang, C.

Chapman, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Chilla, J. L. A.

Ciarlo, D.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Cloetens, P.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Da Silva, L. B.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

David, C.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
[CrossRef]

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Davis, T. J.

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

de Lacheze-Murel, G.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Delmotte, F.

Di Fabrizio, E.

Fayard, B.

Filevich, J.

Fukuda, J.

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22, 375–380 (1995).
[CrossRef] [PubMed]

Fukuda, M.

T. Haga, H. Takenaka, and M. Fukuda, “At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope,” J. Vac. Sci. Technol. B 18, 2916–2920 (2000).
[CrossRef]

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Gmür, N.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Goldberg, K. A.

Guigay, J. P.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Gureyev, T. E.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” in Physics Today (AIP, August 2001) pp. 27–32.

Guttmann, P.

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Haga, T.

T. Haga, H. Takenaka, and M. Fukuda, “At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope,” J. Vac. Sci. Technol. B 18, 2916–2920 (2000).
[CrossRef]

Hamaishi, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

Haraoka, S.

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

Hart, M.

U. Bonse and M. Hart, “An X-ray interferometer with Bragg case beam splitting and beam recombination,” Z. Physik 194, 1–17 (1966).
[CrossRef]

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6, 155–156 (1965).
[CrossRef]

Hirano, K.

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

A. Momose and K. Hirano, “The possibility of phase-contrast X-ray microtomography,” Jpn. J. Appl. Phys. 38, Suppl. 38-1, 625–629 (1999).

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Howells, M. R.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Hubert, S.

F. Delmotte, M.-F. Ravet, F. Bridou, F. Varnière, P. Zeitoun, S. Hubert, L. Vanbostal, and G. Soullie, “X-ray-ultraviolet beam splitters for the Michelson interferometer,” Appl. Opt. 41, 5905–5912 (2002).
[CrossRef] [PubMed]

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Hyodo, K.

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

Ingal, I. V.

I. V. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D: Appl. Phys. 28, 2314–2317 (1995).
[CrossRef]

Ishikawa, T.

Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
[CrossRef]

K. Tamasaku, M. Yabashi, and T. Ishikawa, “X-ray interferometry with multicrystal components using intensity correlation,” Phys. Rev. Lett. 88, 044801 (2002).
[CrossRef] [PubMed]

Itai, Y.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

A. Momose, T. Takeda, and Y. Itai, “Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat—feasibility study,” Radiology 217, 593–596 (2000).
[PubMed]

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Jacobsen, C.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Jamelot, G.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Johnston, R. E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Joy, M.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
[CrossRef] [PubMed]

Joyeux, D.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

D. Joyeux and F. Polack, “Carbon index measurement near K edge, by interferometry with optoelectronic detection,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, and E. Umbach, eds., (Springer, Berlin, 1998), pp. II.103–II.112.

Kagoshima, Y.

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Kanizay, K.

Kaulich, B.

Kawamoto, S.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

Kern, D. P.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Kirz, J.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Klisnick, A.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Kohmura, Y.

Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
[CrossRef]

Kohn, V.

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Koyama, I.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

I. Koyama, H. Yoshikawa, and A. Momose, “Phase-contrast X-ray imaging with a triple-Bragg-case interferometer,” Jpn. J. Appl. Phys. 42, 80–82 (2003).
[CrossRef]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

Koyama, T.

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Kuznetsov, S.

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Lee, S. H.

Leitenberger, W.

W. Leitenberger and A. Snigirev, “Microscopic imaging with high energy X-rays by Fourier transform holography,” J. Appl. Phys. 90, 538–544 (2001).
[CrossRef]

Libby, S.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

London, R. A.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Luding, W.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Matsui, J.

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Matthews, D.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

McNulty, I.

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Menk, R.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Mercier, R.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Momose, A.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

I. Koyama, H. Yoshikawa, and A. Momose, “Phase-contrast X-ray imaging with a triple-Bragg-case interferometer,” Jpn. J. Appl. Phys. 42, 80–82 (2003).
[CrossRef]

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

A. Momose, “Phase-contrast X-ray imaging based on interferometry,” J. Synchrotron Rad. 9, 136–142 (2002).
[CrossRef]

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

A. Momose, T. Takeda, and Y. Itai, “Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat—feasibility study,” Radiology 217, 593–596 (2000).
[PubMed]

A. Momose and K. Hirano, “The possibility of phase-contrast X-ray microtomography,” Jpn. J. Appl. Phys. 38, Suppl. 38-1, 625–629 (1999).

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22, 375–380 (1995).
[CrossRef] [PubMed]

A. Momose, “Demonstration of phase-contrast X-ray computed tomography using an x-ray interferometer,” Nucl. Instrum. & Methods A 352, 622–628 (1995).
[CrossRef]

Momsoe, A.

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

Morconi, M. C.

Moreno, J. C.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Mrowka, S.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Mullot, M.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Naulleau, P. P.

Niemann, B.

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Niimi, T.

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Nöhammer, B.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
[CrossRef]

Nugent, K. A.

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” in Physics Today (AIP, August 2001) pp. 27–32.

Ohigashi, T.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Osterman, S.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
[CrossRef] [PubMed]

Paganin, D.

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” in Physics Today (AIP, August 2001) pp. 27–32.

Phalippou, D.

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Pisano, E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

Polack, F.

D. Joyeux and F. Polack, “Carbon index measurement near K edge, by interferometry with optoelectronic detection,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, and E. Umbach, eds., (Springer, Berlin, 1998), pp. II.103–II.112.

Ravet, M.-F.

Ress, D.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Rocca, J. J.

Romanato, F.

Rudolph, D.

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Sayers, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Schelokov, I.

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Schlenker, M.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Schmahl, G.

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Schneider, G.

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Seya, E.

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

Shipley, A.

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
[CrossRef] [PubMed]

Snigirev, A.

W. Leitenberger and A. Snigirev, “Microscopic imaging with high energy X-rays by Fourier transform holography,” J. Appl. Phys. 90, 538–544 (2001).
[CrossRef]

Snigirev, S.

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Snigireva, I.

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Solak, H. H.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
[CrossRef]

Soullie, G.

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Susini, J.

Suzuki, Y.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
[CrossRef]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

Takai, K.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Takano, H.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
[CrossRef]

Takeda, T.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

A. Momose, T. Takeda, and Y. Itai, “Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat—feasibility study,” Radiology 217, 593–596 (2000).
[PubMed]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Takenaka, H.

T. Haga, H. Takenaka, and M. Fukuda, “At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope,” J. Vac. Sci. Technol. B 18, 2916–2920 (2000).
[CrossRef]

Takeuchi, A.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Talbot, H.

H. Talbot, “Facts relating to optical science,” Phil. Mag. 9, 401–407 (1836).

Tamasaku, K.

K. Tamasaku, M. Yabashi, and T. Ishikawa, “X-ray interferometry with multicrystal components using intensity correlation,” Phys. Rev. Lett. 88, 044801 (2002).
[CrossRef] [PubMed]

Thet-Thet-Lwin,

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

Thieme, J.

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Thomlinson, W.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Trebes, J. E.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Tsusaka, Y.

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Uesugi, K.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

Van Dyck, D.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Van Landuyt, J.

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Vanbostal, L.

Varnière, F.

Wan, A. S.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Washburn, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Watanabe, N.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Watanabe, T.

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

Weber, F.

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

Wilhein, T.

B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B. Fayard, and J. Susini, “Differential interferometric contrast X-ray microscopy with twin zone plates,” J. Opt. Soc. Am. A 19, 797–806 (2002).
[CrossRef]

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

Wilkins, S. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Wu, J.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

Yabashi, M.

K. Tamasaku, M. Yabashi, and T. Ishikawa, “X-ray interferometry with multicrystal components using intensity correlation,” Phys. Rev. Lett. 88, 044801 (2002).
[CrossRef] [PubMed]

Yokosuka, H.

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Yokoyama, Y.

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

Yoneyama, A.

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

Yoshikawa, H.

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

I. Koyama, H. Yoshikawa, and A. Momose, “Phase-contrast X-ray imaging with a triple-Bragg-case interferometer,” Jpn. J. Appl. Phys. 42, 80–82 (2003).
[CrossRef]

Yu, Q.

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

Zeitoun, P.

F. Delmotte, M.-F. Ravet, F. Bridou, F. Varnière, P. Zeitoun, S. Hubert, L. Vanbostal, and G. Soullie, “X-ray-ultraviolet beam splitters for the Michelson interferometer,” Appl. Opt. 41, 5905–5912 (2002).
[CrossRef] [PubMed]

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Zeniya, T.

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

Zhong, Z.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Ziegler, E.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
[CrossRef]

AIP Conf. Proc. (1)

D. Joyeux, R. Mercier, D. Phalippou, M. Mullot, S. Hubert, P. Zeitoun, A. Carillon, A. Klisnick, G. Jamelot, E. Béchir, and G. de Lacheze-Murel, “An interferometric microimaging system for probing laser plasma with an X-ray laser,” in X-Ray Microscopy, W. Meyer-Ilse, T. Warwick, and D. Attwood, eds., AIP Conf. Proc. 507, 511–514 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

U. Bonse and M. Hart, “An X-ray interferometer,” Appl. Phys. Lett. 6, 155–156 (1965).
[CrossRef]

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3289 (2002).
[CrossRef]

P. Cloetens, W. Luding, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912- (1999).
[CrossRef]

Circulation (1)

T. Takeda, A. Momose, J. Wu, Q. Yu, T. Zeniya, Thet-Thet-Lwin, A. Yoneyama, and Y. Itai, “Vessel imaging by interferometric phase-contrast X-ray technique,” Circulation 105, 1708–1712 (2002).
[CrossRef] [PubMed]

J. Appl. Crystallogr. (1)

P. Becker and U. Bonse, “The skew-symmetric two-crystal X-ray interferometer,” J. Appl. Crystallogr. 7, 593–598 (1974).
[CrossRef]

J. Appl. Phys. (2)

Y. Kohmura, T. Ishikawa, H. Takano, and Y. Suzuki, “Shearing X-ray interferometer with an X-ray prism,” J. Appl. Phys. 93, 2283–2285 (2003).
[CrossRef]

W. Leitenberger and A. Snigirev, “Microscopic imaging with high energy X-rays by Fourier transform holography,” J. Appl. Phys. 90, 538–544 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

I. V. Ingal and E. A. Beliaevskaya, “X-ray plane-wave topography observation of the phase contrast from a non-crystalline object,” J. Phys. D: Appl. Phys. 28, 2314–2317 (1995).
[CrossRef]

J. Phys. IV (3)

N. Watanabe, H. Yokosuka, T. Ohigashi, H. Takano, A. Takeuchi, Y. Suzuki, and A. Aoki, “Optical holography in the hard X-ray domain,” J. Phys. IV 104, 551–556 (2003).

Y. Kagoshima, Y. Yokoyama, T. Niimi, T. Koyama, Y. Tsusaka, J. Matsui, and K. Takai, “Hard X-ray phase-contrast microscope for observing transparent specimens,” J. Phys. IV 104, 49–52 (2003).

A. Momose, I. Koyama, Y. Hamaishi, H. Yoshikawa, T. Takeda, J. Wu, Y. Itai, K. Takai, K. Uesugi, and Y. Suzuki, “Phase-contrast microtomography using an X-ray interferometer having a 40-µm analyzer,” J. Phys. IV 104, 599–602 (2003).

J. Synchrotron Rad. (2)

A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano, and K. Hyodo, “Large-area phase-contrast X-ray imaging using a two-crystal X-ray interferometer,” J. Synchrotron Rad. 9, 277–281 (2002).
[CrossRef]

A. Momose, “Phase-contrast X-ray imaging based on interferometry,” J. Synchrotron Rad. 9, 136–142 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Haga, H. Takenaka, and M. Fukuda, “At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope,” J. Vac. Sci. Technol. B 18, 2916–2920 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (3)

A. Momose and K. Hirano, “The possibility of phase-contrast X-ray microtomography,” Jpn. J. Appl. Phys. 38, Suppl. 38-1, 625–629 (1999).

I. Koyama, H. Yoshikawa, and A. Momose, “Phase-contrast X-ray imaging with a triple-Bragg-case interferometer,” Jpn. J. Appl. Phys. 42, 80–82 (2003).
[CrossRef]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[CrossRef]

Med. Phys. (1)

A. Momose and J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Med. Phys. 22, 375–380 (1995).
[CrossRef] [PubMed]

Nat. Med. (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[CrossRef] [PubMed]

Nature (3)

W. Cash, A. Shipley, S. Osterman, and M. Joy, “Laboratory detection of X-ray fringes with a grazing-incidence interferometer,” Nature 407, 160162 (2000).
[CrossRef] [PubMed]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384, 335–338 (1996).
[CrossRef]

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595–598 (1995).
[CrossRef]

Nucl. Instrum. & Methods A (1)

A. Momose, “Demonstration of phase-contrast X-ray computed tomography using an x-ray interferometer,” Nucl. Instrum. & Methods A 352, 622–628 (1995).
[CrossRef]

Opt. Lett. (1)

Phil. Mag. (1)

H. Talbot, “Facts relating to optical science,” Phil. Mag. 9, 401–407 (1836).

Phys. Med. Biol. (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced X-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron density measurements of high density plasmas using soft X-ray laser interferometry,” Phys. Rev. Lett. 74, 3991–3994 (1995).
[CrossRef] [PubMed]

K. Tamasaku, M. Yabashi, and T. Ishikawa, “X-ray interferometry with multicrystal components using intensity correlation,” Phys. Rev. Lett. 88, 044801 (2002).
[CrossRef] [PubMed]

Radiology (2)

T. Takeda, A. Momsoe, K. Hirano, S. Haraoka, T. Watanabe, and Y. Itai, “Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy,” Radiology 214, 298–301 (2000).
[PubMed]

A. Momose, T. Takeda, and Y. Itai, “Blood vessels: depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat—feasibility study,” Radiology 217, 593–596 (2000).
[PubMed]

Rev. Sci. Instrum. (1)

S. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Science (1)

I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by Fourier transform X-ray holography,” Science 256, 1009–1012 (1992).
[CrossRef] [PubMed]

Z. Physik (1)

U. Bonse and M. Hart, “An X-ray interferometer with Bragg case beam splitting and beam recombination,” Z. Physik 194, 1–17 (1966).
[CrossRef]

Other (4)

G. Schmahl, P. Guttmann, G. Schneider, B. Niemann, C. David, T. Wilhein, J. Thieme, and D. Rudolph, “Phase contrast studies of hydrated specimens with the X-ray microscope at BESSY,” in X-Ray Microscopy IV, V. V. Aristov and A. I. Erko, eds., (Chernogolovka, Russia, 1994) pp.196–206.

A. Authier, Dynamical theory of X-ray diffraction (Oxford, New York, 2001).

D. Joyeux and F. Polack, “Carbon index measurement near K edge, by interferometry with optoelectronic detection,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, and E. Umbach, eds., (Springer, Berlin, 1998), pp. II.103–II.112.

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A phase odyssey,” in Physics Today (AIP, August 2001) pp. 27–32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Crystal X-ray interferometers used for interferometric imaging: (a) monolithic LLL X-ray interferometer, (b) interferometer consisting of two crystal blocks carrying two lamellae, and (c) BBB X-ray interferometer. S: beam splitter, M: mirror, A: analyzer.

Fig. 2.
Fig. 2.

X-ray interferometer consisting of two crystal blocks: (a) Stage for aligning the blocks and beam paths, (b) Interference pattern generated with this interferometer using 0.07-nm X-rays. From J. Synchrotron Rad. 9, 277 (2002).

Fig. 3.
Fig. 3.

Differential X-ray interferometers using a prism (a) and gratings (G1, G2) (b), (c).

Fig. 4.
Fig. 4.

X-ray interferometry with focusing optics. Using a twin zone plate (a), two focal spots have been formed generating an interference field downstream. When the twin zone plate is used as an objective lens, a differential phase-contrast image is obtained. Using a transmission grating, an interferometer (b) for testing focusing optics has also been developed.

Fig. 5.
Fig. 5.

X-ray interferometers using free-standing multilayers (a) or gratings (b) for amplitude division. Interference fringes could be observed by using a single shot of soft X-ray laser.

Fig. 6.
Fig. 6.

Soft X-ray interferometers using synchrotron radiation. By using Fresnel’s bimirror (a), a comparatively stable interferometer has been developed. Operation of a Mirau interferometer (b) with a free-standing multilayer is a notable achievement.

Fig. 7.
Fig. 7.

Phase map measured with 0.07-nm X-rays by means of the fringe scanning method using the LLL X-ray interferometer. Blood vessels in a mouse liver were depicted by replacing blood with physiological salt solution. The contrast caused by the thickness variation of the liver has been removed by image processing.

Fig. 8.
Fig. 8.

The tissue of a rat kidney measured by phase tomography with 0.1-nm X-rays using the LLL X-ray interferometer with a 40-µm analyzer.

Metrics