Abstract

In-line phase contrast enables weakly absorbing specimens to be imaged successfully with x-rays, and greatly enhances the visibility of fine scale structure in more strongly absorbing specimens. This type of phase contrast requires a spatially coherent beam, a condition that can be met by a microfocus x-ray source. We have developed an x-ray microscope, based on such a source, which is capable of high resolution phase-contrast imaging and tomography. Phase retrieval enables quantitative information to be recovered from phase-contrast microscope images of homogeneous samples of known composition and density, and improves the quality of tomographic reconstructions.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. U. Bonse and M. Hart, �??An x-ray interferometer,�?? Appl. Phys. Lett. 6, 155-157 (1965).
    [CrossRef]
  2. M. Ando and S. Hosoya, �??An attempt at x-ray phase-contrast microscopy,�?? in Proc. 6th Intern. Conf. On Xray Optics and Microanalysis, G. Shinoda, K. Kohra and T. Ichinokawa Eds. (Univ. of Tokyo Press, Tokyo, 1972) pp. 63-68.
  3. A. Momose, T.Takeda and Y. Itai, �??Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,�?? Rev. Sci. Instr. 66, 1434-1436 (1995).
    [CrossRef]
  4. Y. Kohmura, H. Takano, Y. Suzuki and T. Ishikawa, �??Shearing x-ray interferometer with an X-ray prism and its improvement,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp. 571-574.
  5. C. David, B. Nöhammer, H.H. Solak and E. Ziegler, �??Hard x-ray shearing interferometer,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 595-598.
  6. T. Wilhein et al, �??Differential interference contrast x-ray microscopy with twin zone plates at ESRF beamline ID21,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 535-541.
  7. G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann and B. Niemann, �??Phase contrast x-ray microscopy studies,�?? Optik, 97, 181-182 (1994).
  8. Y. Kohmura, A. Takeuchi, H. Takano, Y. Suzuki and T. Ishikawa, �??Zernike phase-contrast x-ray microscope with an x-ray refractive lens,�?? Proc. 7th Intern. Con.f. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 603-606.
  9. J. R. Palmer and G. R. Morrison, �??Differential phase-contrast imaging in the scanning transmission x-ray microscope,�?? in OSA Proc. On Short Wavelength Coherent Radiation: Generation and Applications, P.H. Buckbaum and N.M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 141-145.
  10. M. Feser, C. Jacobsen, P. Rehak and G. DeGeronimo, �??Scanning transmission x-ray microscopy with a segmented detector,�?? Proc. 7th Intern. Con.f. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 529-534.
  11. R.W. Gerchberg and W.O. Saxton, �??A practical algorithm for the determination of phase from images and diffraction plane pictures,�?? Optik, 35, 237-246 (1972).
  12. J. Miao, P. Charalambous, J. Kirz and D. Sayre, �??Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,�?? Nature, 400, 342-344 (1992).
    [CrossRef]
  13. M.R. Howells, et al., �??X-ray microscopy by phase-retrieval methods at the Advanced Light Source,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 557-561.
  14. Gabor, D., �??A new microscopic principle,�?? Nature 161, 777-778 (1948)
    [CrossRef] [PubMed]
  15. C. Jacobsen, M. Howells, J. Kirz and S. Rothman, �??X-ray holographic microscopy using photoresists,�?? J. Opt. Soc. Am. A 7, 1847-1861 (1990).
    [CrossRef]
  16. N. Watanabe et al., �??Optical Holography in the hard x-ray domain,�?? Proc. 7th Intern. Con.f. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 551-556.
  17. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov and I. Schelokov, �??On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,�?? Rev. Sci. Inst. 66, 5486-5492 (1995).
    [CrossRef]
  18. K.A. Nugent, T.E. Gureyev, D.J. Cookson, D. Paganin, and Z. Barnea, �??Quantitative phase imaging using hard X rays,�?? Phys. Rev. Lett. 77, 2961-2964 (1996).
    [CrossRef] [PubMed]
  19. S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany and A.W. Stevenson, �??Phase-contrast imaging using polychromatic hard x-rays,�?? Nature 384, 335-338 (1996).
    [CrossRef]
  20. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, �??Phase objects in synchrotron radiation hard X-ray imaging,�?? J.Phys. D: Appl. Phys. 29, 133-146 (1996).
    [CrossRef]
  21. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.-P. Guigay, and M. Schlenker, �??Holotomography: Quantitative phase tomography with micrometre resolution using hard synchrotron radiation X-rays,�?? Appl. Phys. Lett. 75, 2912-2914 (1999).
    [CrossRef]
  22. H. Yoshimura, D. Shoutsu, T. Horikoshi, H. Chiba, S. Kumagai, K. Takahashi and T. Mitsui, �??Application of SEM-modified x-ray microscope to entomology and histology, and effects of x-ray coherence in imaging,�?? J. Elect. Micros. 49, 621-628 (2000).
    [CrossRef]
  23. V.E. Cosslett and W.C. Nixon, W, X-ray Microscopy, (Cambridge Univ. Press, London, 1960).
  24. S.C. Mayo et al., �??Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,�?? J. Microscopy 207, 79-96 (2002).
    [CrossRef]
  25. J.M. Cowley, Diffraction Physics, 3rd revised edition, (North-Holland, Amsterdam, 1995).
  26. J.C.H. Spence, Experimental High-resolution Electron Microscopy. 2nd edition, (Oxford Univ. Press: New York, 1988).
  27. T.E. Gureyev, S. Mayo, S.W. Wilkins, D. Paganin, and A.W. Stevenson, �??Quantitative in-line phasecontrast imaging with multienergy X-rays,�?? Phys. Rev. Lett. 86 (25), 5827-5830 (2001).
    [CrossRef] [PubMed]
  28. D Paganin, S. C Mayo, T. E Gureyev, P. R Miller and S. W Wilkins, �??Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,�?? J. Microscopy 206, 33-40 (2002)
    [CrossRef]
  29. T.E. Gureyev, �??Composite techniques for phase retrieval in the Fresnel region,�?? Opt. Commun. 220, 49-58 (2003).
    [CrossRef]
  30. L.A. Feldkamp, L.C. Davis and J.W. Kress, �??Practical cone-beam algorithm,�?? J. Opt. Soc. Am. A 1, 612-619 (1984).
    [CrossRef]
  31. A.V. Bronnikov, �??Reconstruction formulas in phase-contrast tomography,�?? Opt. Commun. 171, 239-244 (1999).
    [CrossRef]

Appl. Phys. Lett. (2)

U. Bonse and M. Hart, �??An x-ray interferometer,�?? Appl. Phys. Lett. 6, 155-157 (1965).
[CrossRef]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.-P. Guigay, and M. Schlenker, �??Holotomography: Quantitative phase tomography with micrometre resolution using hard synchrotron radiation X-rays,�?? Appl. Phys. Lett. 75, 2912-2914 (1999).
[CrossRef]

J. Electron. Microsc. (1)

H. Yoshimura, D. Shoutsu, T. Horikoshi, H. Chiba, S. Kumagai, K. Takahashi and T. Mitsui, �??Application of SEM-modified x-ray microscope to entomology and histology, and effects of x-ray coherence in imaging,�?? J. Elect. Micros. 49, 621-628 (2000).
[CrossRef]

J. Microscopy (2)

S.C. Mayo et al., �??Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,�?? J. Microscopy 207, 79-96 (2002).
[CrossRef]

D Paganin, S. C Mayo, T. E Gureyev, P. R Miller and S. W Wilkins, �??Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,�?? J. Microscopy 206, 33-40 (2002)
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, �??Phase objects in synchrotron radiation hard X-ray imaging,�?? J.Phys. D: Appl. Phys. 29, 133-146 (1996).
[CrossRef]

Nature (3)

S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany and A.W. Stevenson, �??Phase-contrast imaging using polychromatic hard x-rays,�?? Nature 384, 335-338 (1996).
[CrossRef]

J. Miao, P. Charalambous, J. Kirz and D. Sayre, �??Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,�?? Nature, 400, 342-344 (1992).
[CrossRef]

Gabor, D., �??A new microscopic principle,�?? Nature 161, 777-778 (1948)
[CrossRef] [PubMed]

Opt. Commun. (2)

T.E. Gureyev, �??Composite techniques for phase retrieval in the Fresnel region,�?? Opt. Commun. 220, 49-58 (2003).
[CrossRef]

A.V. Bronnikov, �??Reconstruction formulas in phase-contrast tomography,�?? Opt. Commun. 171, 239-244 (1999).
[CrossRef]

Optik (2)

R.W. Gerchberg and W.O. Saxton, �??A practical algorithm for the determination of phase from images and diffraction plane pictures,�?? Optik, 35, 237-246 (1972).

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann and B. Niemann, �??Phase contrast x-ray microscopy studies,�?? Optik, 97, 181-182 (1994).

Phys. Rev. Lett. (2)

K.A. Nugent, T.E. Gureyev, D.J. Cookson, D. Paganin, and Z. Barnea, �??Quantitative phase imaging using hard X rays,�?? Phys. Rev. Lett. 77, 2961-2964 (1996).
[CrossRef] [PubMed]

T.E. Gureyev, S. Mayo, S.W. Wilkins, D. Paganin, and A.W. Stevenson, �??Quantitative in-line phasecontrast imaging with multienergy X-rays,�?? Phys. Rev. Lett. 86 (25), 5827-5830 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

A. Momose, T.Takeda and Y. Itai, �??Phase-contrast x-ray computed tomography for observing biological specimens and organic materials,�?? Rev. Sci. Instr. 66, 1434-1436 (1995).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov and I. Schelokov, �??On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,�?? Rev. Sci. Inst. 66, 5486-5492 (1995).
[CrossRef]

Other (12)

N. Watanabe et al., �??Optical Holography in the hard x-ray domain,�?? Proc. 7th Intern. Con.f. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 551-556.

M.R. Howells, et al., �??X-ray microscopy by phase-retrieval methods at the Advanced Light Source,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 557-561.

M. Ando and S. Hosoya, �??An attempt at x-ray phase-contrast microscopy,�?? in Proc. 6th Intern. Conf. On Xray Optics and Microanalysis, G. Shinoda, K. Kohra and T. Ichinokawa Eds. (Univ. of Tokyo Press, Tokyo, 1972) pp. 63-68.

Y. Kohmura, H. Takano, Y. Suzuki and T. Ishikawa, �??Shearing x-ray interferometer with an X-ray prism and its improvement,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp. 571-574.

C. David, B. Nöhammer, H.H. Solak and E. Ziegler, �??Hard x-ray shearing interferometer,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 595-598.

T. Wilhein et al, �??Differential interference contrast x-ray microscopy with twin zone plates at ESRF beamline ID21,�?? Proc. 7th Intern. Conf. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 535-541.

Y. Kohmura, A. Takeuchi, H. Takano, Y. Suzuki and T. Ishikawa, �??Zernike phase-contrast x-ray microscope with an x-ray refractive lens,�?? Proc. 7th Intern. Con.f. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 603-606.

J. R. Palmer and G. R. Morrison, �??Differential phase-contrast imaging in the scanning transmission x-ray microscope,�?? in OSA Proc. On Short Wavelength Coherent Radiation: Generation and Applications, P.H. Buckbaum and N.M. Ceglio, eds., Vol. 11 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 141-145.

M. Feser, C. Jacobsen, P. Rehak and G. DeGeronimo, �??Scanning transmission x-ray microscopy with a segmented detector,�?? Proc. 7th Intern. Con.f. on X-ray Microscopy, J. Susini, D. Joyeux, F. Polack, Eds. (EDP Sciences, Les Ulis) pp 529-534.

J.M. Cowley, Diffraction Physics, 3rd revised edition, (North-Holland, Amsterdam, 1995).

J.C.H. Spence, Experimental High-resolution Electron Microscopy. 2nd edition, (Oxford Univ. Press: New York, 1988).

V.E. Cosslett and W.C. Nixon, W, X-ray Microscopy, (Cambridge Univ. Press, London, 1960).

Supplementary Material (2)

» Media 1: AVI (1572 KB)     
» Media 2: AVI (232 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Fig. 1. Diagram showing the main components of the XuM.

Fig. 2.
Fig. 2.

Sketch of the point-projection microscope geometry, indicating R1 the source-sample distance, and R2 the sample-detector distance.

Fig. 3.
Fig. 3.

Left: Phase contrast images of a dust mite. The grooved texture of the mite’s back is clearly visible due to phase contrast, despite the small size of these grooves compared to the overall thickness of the mite (10 min. exposure, R1=1.9mm, R1+R2=250mm). Right: Part of a 1mm diameter multilayer composed of concentric shells of different thicknesses. showing a fine crack in the outer shell (10 min exposure, R1=3.6mm, R1+R2=250mm).

Fig. 4.
Fig. 4.

Absorption and phase contrast transfer functions represented as a function of the dimensionless coordinate u√(zλ),where u is the spatial frequency, λ is the wavelength and z the propagation distance (for a parallel beam). The images of the face show the effect on a pure phase object of imaging conditions at the corresponding position on the x axis u√(λz) of the contrast transfer function, where in this case, u is the peak spatial frequency in the image.

Fig. 5.
Fig. 5.

Diffraction dominated image of 9µm latex spheres acquired using a Cu target at 5keV accelerating voltage to excite the Cu L lines at ~930eV. This was acquired using a different detector to the usual XuM detector, which was sensitive to x-rays below 1keV, R1=1.4mm, R1+R2=250mm, 10 min exposure.

Fig. 6.
Fig. 6.

Phase contrast image (left) and phase retrieved sample thickness for a puncture in a polymer film, acquired with a Ta target at 15kV, R1=2.8mm, R1+R2=250mm, 10 min exposure.

Fig. 7.
Fig. 7.

Phase retrieval from the intermediate-field image in Fig. 5.

Fig. 8.
Fig. 8.

Image sequence showing image-processing steps applied to image of a semiconductor test device, from left to right: raw image; deconvolution of source shape; single image phase retrieval; and, Gerchberg-Saxton refinement. R1=80µm, R1+R2=250mm, 20min exposure.

Fig. 9.
Fig. 9.

Left image shows a single view from a tomographic dataset of a puncture through a polymer film. The right image is a reconstructed cross section through the puncture. R1=2.9mm, R1+R2=250mm, total data collection time 8hrs.

Fig. 10.
Fig. 10.

Upper images show a dataset view and a reconstructed cross section of part of a fly’s leg including a joint. Lower images show a phase retrieved version of the same view and a reconstructed section produced using the modified data (R1=6.9mm, R1+R2=250mm, total data collection time 10hrs).

Fig. 11.
Fig. 11.

(1.5 MB movie) Movie of the reconstructed volume of the fly’s leg joint shown in Fig. 10.

Fig. 12.
Fig. 12.

Upper: raw (left) and phase retrieved (right) images of a sliver of thin card. Lower: reconstructed cross section from phase retrieved data (R1=5.1mm, R1+R2=250mm, total data collection time 8hrs).

Fig. 13.
Fig. 13.

(230 KB movie) Movie of reconstructed volume of paper sample using phase-retrieved data and showing how thresholding can separate features of different density.

Metrics