Abstract

We report the observation of self phase-locked pulse pairs in a stretched-pulse fiber laser operating in the normal path-averaged dispersion regime. Numerical simulations agree with our experimental results. More insight is provided with a numerical comparison between intracavity profiles of pulse pairs in anomalous and in normal dispersion regimes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. B. Grudinin, D. J. Richardson and D. N. Payne �??Energy quantisation in figure eight fibre laser,�?? Electron. Lett. 28, 67-68 (1992).
    [CrossRef]
  2. M. J. Guy, D. U. Noske, and J. R. Taylor, �??Generation of femtosecond soliton pulses by passive mode locking of an ytterbium-erbium figure-of-eight fiber laser,�?? Opt. Lett 18, 1447-1449 (1993).
    [CrossRef] [PubMed]
  3. A. B. Grudinin, D. J. Richardson and D. N. Payne, �??Passive harmonic modelocking of a fiber soliton ring laser,�?? Electron. Lett. 29, 1860-1861 (1993).
    [CrossRef]
  4. D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, �??Observation of bound states of solitons in a passively mode-locked fiber laser,�?? Phys. Rev. A 64, 33814 (2001).
    [CrossRef]
  5. Ph. Grelu, F. Belhache, F. Gutty and J. M. Soto-Crespo, �??Phase-locked soliton pairs in a stretched-pulse fiber laser�?? Opt. Lett. 27, 966-968 (2002).
    [CrossRef]
  6. Ph. Grelu, F. Belhache, F. Gutty and J. M. Soto-Crespo, �??Relative phase-locking of pulses in a passively mode-locked fiber laser,�?? J. Opt. Soc. B 20, 863-870 (2003).
    [CrossRef]
  7. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, �??Stable soliton pairs in optical transmission lines and fiber lasers�??, J. Opt. Soc. Am. B 15, 515-523 (1998).
    [CrossRef]
  8. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]

Electron. Lett. (2)

A. B. Grudinin, D. J. Richardson and D. N. Payne �??Energy quantisation in figure eight fibre laser,�?? Electron. Lett. 28, 67-68 (1992).
[CrossRef]

A. B. Grudinin, D. J. Richardson and D. N. Payne, �??Passive harmonic modelocking of a fiber soliton ring laser,�?? Electron. Lett. 29, 1860-1861 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. B (1)

Ph. Grelu, F. Belhache, F. Gutty and J. M. Soto-Crespo, �??Relative phase-locking of pulses in a passively mode-locked fiber laser,�?? J. Opt. Soc. B 20, 863-870 (2003).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

D. Y. Tang, W. S. Man, H. Y. Tam and P. D. Drummond, �??Observation of bound states of solitons in a passively mode-locked fiber laser,�?? Phys. Rev. A 64, 33814 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fiber ring laser experimental setup

Fig. 2.
Fig. 2.

(a) Autocorrelation function and (b) optical spectrum recorded at output 3.

Fig. 3.
Fig. 3.

(a) Compressed pulse pair and (b) optical spectrum recorded at output 1.

Fig. 4.
Fig. 4.

Scheme of the numerical model

Fig. 5
Fig. 5

(a) Trajectories of pulse pairs. The point denoted by a red dot acts as an attractor. (b) Optical spectrum corresponding to the stationary solution of the attractor, as taken after the polarizer. The parameters of the simulation are : LSMF=3.6, LEDF=1.88, Γ=3, γ=0.2, Qsat=8, g0=1.5, β=0.08, θ=142°.

Fig. 6.
Fig. 6.

Comparison of simulated field profiles along the dispersion-managed cavity. (a): in normal path-averaged dispersion regime, (b) in anomalous path-averaged dispersion regime. red colour is used for propagation in the EDF, whereas blue is for propagation in the SMF. The parameters used in (a) are the same as in Fig.5. The parameters used in (b) are: LEDF=1.6 m, LSMF=4.8 m, Γ=3, D=-2.3, γ=0.09, g0=1.5, Qsat=0.9, β=0.05, θ=70°. Time and distance are in real units, whereas one E-field unit is equal to 28 (Watt)1/2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i E z + D 2 E tt + Γ E 2 E = i g 0 E 1 + Q Q sat + i β E tt
i U z + γ U + 1 2 U tt + U 2 U + 2 3 V 2 U + 1 3 V 2 U * = 0 ,
i V z γ V + 1 2 V tt + V 2 V + 2 3 U 2 V + 1 3 U 2 V * = 0 .

Metrics