Abstract

An all-solid microstructured fiber based on two thermally-matched silicate glasses with a high index contrast has been fabricated for the first time. The microstructured cladding was shown to be essentially unchanged during fiber drawing. Fiber attenuation was measured as 5dB/m at 1.55µm by the cutback method. High nonlinearity 230 W-1km-1 has been predicted and experimentally demonstrated in this fiber at 1.55µm. In addition, modeling predicts that near-zero dispersion can be achieved between 1.5–1.6µm in this class of high nonlinear fiber.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin and T. J. Shepherd, �??Full 2-D photonic band gaps in silica/air structures,�?? Electron. Lett. 31, 1941-1942 (1995).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell and D.M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996); Errata, Opt. Lett. 22, 484-485 (1997).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell and J-P de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347-1348 (1998).
    [CrossRef]
  6. T. A. Birks, J. C. Knight and P. St. J. Russell, �??Endlessly single-mode photonic crystal fibre,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, �??Efficient modeling of holey fibers,�?? Proc. Opt. Fiber Commun. Conf. No. FG3, San Diego, California 21-26 Feb 1999.
  8. S. Coen, A. H. L. Chan, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  9. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. St. J. Russell, �??Soliton effects in photonic crystal fibers at 850nm,�?? Electron. Lett. 36, 53-55 (2000).
    [CrossRef]
  10. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, D. J. Richardson, �??Four-wave mixing based 10Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,�?? Photonics Technology Lett. 15, 440-442 (2003)
    [CrossRef]
  11. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, B. J. Mangan, T. A. Birks and P. St. J. Russell, �??Highly birefringent photonic crystal fibers,�?? Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  12. T. A. Birks, D. Mogilevtsev, J. C. Knight and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Phot. Tech. Lett. 11, 674-676 (1999).
    [CrossRef]
  13. J. C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth and P. St. J. Russell, "Anomalous dispersion in photonic crystal fibers," IEEE Phot. Tech. Lett. 12, 807-809, (2000).
    [CrossRef]
  14. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, D. J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998-2000 (2000).
    [CrossRef]
  15. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt and D. J. Richardson, �??High nonlinearity extruded single-mode holey optical fibers,�?? Opt. Fiber Commun. Conf. Post deadline paper FA1, 1-3 OFC 2002 (2002).
  16. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. J. Taylor, �??Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,�?? Opt. Express 10, 1520-1525 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>
    [CrossRef] [PubMed]
  17. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, D. J. Richardson, �??Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,�?? Proc. Opt. Fiber Commun. Conf. 2003, No. PD03 (Postdeadline), Atlanta 23-28 Mar 2003.
  18. C. Cryan, K. Tatah, R. Strack, �??Multi-component all glass photonic bandgap fiber,�?? US Patent No. US 6598428B1 (Date of Patent: Jul. 29, 2003).
  19. K. F. J. Heinrich, Electron Beam X-ray Microanalysis, (Van Nostrand Reinhold Co., 1981).
  20. B. T. Kuhlmey, T. P. White, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, L. C. Botten, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  21. H. Scholze, Glass: Nature, Structure and properties, (Springer-Verlag, 1991).
  22. X. Feng, S. Tanabe, T. Hanada, �??Hydroxyl groups in erbium-doped germanotellurite glasses,�?? J. Non-Cryst. Solids 281, 48-54 (2001).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, Boston, 2001).
  24. D. N. Nikogosyan, Properties of Optical and Laser-related Materials: A Handbook, (John Wiley & Sons, 1997).
  25. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, �??Direct continuouswave measurement of n2 in various types of telecommunication fiber at 1.55µm,�?? Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  26. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, �??Nonlinearity in holey optical fibers: measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  27. W. H. Reeves, J. C. Knight, and P. St. J. Russell, �??Demonstration of ultraflattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609-613 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>.
    [CrossRef] [PubMed]

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell and J-P de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347-1348 (1998).
[CrossRef]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin and T. J. Shepherd, �??Full 2-D photonic band gaps in silica/air structures,�?? Electron. Lett. 31, 1941-1942 (1995).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, D. J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre and P. St. J. Russell, �??Soliton effects in photonic crystal fibers at 850nm,�?? Electron. Lett. 36, 53-55 (2000).
[CrossRef]

IEEE Phot. Tech. Lett.

T. A. Birks, D. Mogilevtsev, J. C. Knight and P. St. J. Russell, "Dispersion compensation using single material fibers," IEEE Phot. Tech. Lett. 11, 674-676 (1999).
[CrossRef]

J. C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth and P. St. J. Russell, "Anomalous dispersion in photonic crystal fibers," IEEE Phot. Tech. Lett. 12, 807-809, (2000).
[CrossRef]

J. Non-Cryst. Solids

X. Feng, S. Tanabe, T. Hanada, �??Hydroxyl groups in erbium-doped germanotellurite glasses,�?? J. Non-Cryst. Solids 281, 48-54 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Commun. Conf

T. M. Monro, D. J. Richardson, N. G. R. Broderick, �??Efficient modeling of holey fibers,�?? Proc. Opt. Fiber Commun. Conf. No. FG3, San Diego, California 21-26 Feb 1999.

Opt. Fiber Commun. Conf.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt and D. J. Richardson, �??High nonlinearity extruded single-mode holey optical fibers,�?? Opt. Fiber Commun. Conf. Post deadline paper FA1, 1-3 OFC 2002 (2002).

P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, D. J. Richardson, �??Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,�?? Proc. Opt. Fiber Commun. Conf. 2003, No. PD03 (Postdeadline), Atlanta 23-28 Mar 2003.

Opt. Lett.

Photonics Technology Lett.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, D. J. Richardson, �??Four-wave mixing based 10Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,�?? Photonics Technology Lett. 15, 440-442 (2003)
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other

C. Cryan, K. Tatah, R. Strack, �??Multi-component all glass photonic bandgap fiber,�?? US Patent No. US 6598428B1 (Date of Patent: Jul. 29, 2003).

K. F. J. Heinrich, Electron Beam X-ray Microanalysis, (Van Nostrand Reinhold Co., 1981).

H. Scholze, Glass: Nature, Structure and properties, (Springer-Verlag, 1991).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, Boston, 2001).

D. N. Nikogosyan, Properties of Optical and Laser-related Materials: A Handbook, (John Wiley & Sons, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Comparison of SEM photos of 220 µm diameter SOHO fiber by adjusting accelerating voltage (EHT) (a) whole view (scale bar: 100µm), EHT = 2.72 kV, (b) zoomed center view (scale bar: 20µm), EHT = 2.72 kV; (c) whole view (scale bar: 100µm), EHT = 22.00 kV, (d) zoomed center view (scale bar: 2µm), EHT = 22.00 kV.

Fig. 2.
Fig. 2.

SEM photos of microstructured cladding in (a) the 1mm cane inserted into jacket tube before fiber drawing, (b) 440µm OD fiber with Λ=4µm and (c) 220µm OD fiber with of Λ=2µm. (EHT = 22.00 kV)

Fig. 3.
Fig. 3.

(a) Calculated confinement losses of B1/H1 based SOHO fiber as a function of the number of hexagonal packed rings and their diameter to spacing ratio d/Λ with Λ=4µm at 1.55µm; (b) measured propagation attenuation of (1) unclad 250µm B1 fiber, (2) 440µm B1/H1 SOHO fiber, (3) 220 µm B1/H1 SOHO fiber. Measurement errors are plotted.

Fig. 4.
Fig. 4.

Effective nonlinearity of SOHO fiber (left: calculated for a range of simple step-index fiber designs, right: measured relationship between nonlinear phase shift and the input laser power at 1.55µm)

Fig. 5.
Fig. 5.

Prediction of GVD of a range of B1/H1 SOHO fibers made using a full-vector implementation of the orthogonal function method [7]. The material dispersions of both B1 and H1 materials have been included ab initio in these predictions.

Metrics