Abstract

We report the generation of complex soliton-like patterns in non-critically-phase-matched potassium niobate which occur in random spatial patterns from shot-to-shot. Up to five spots have been generated at input intensities of 10’s GW/cm2, many times the single soliton threshold. The mechanism which leads to the symmetry breaking required for the complex patterns is interpreted to be random noise imprinted on the input light.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman-Hall, London, 1997).
  2. Yu.S. Kivshar and G. Agrawal, Optical Solitons, (Academic, New York, 2003).
  3. W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner and C. R. Menyuk, �??Observation of two-dimensional spatial solitary waves in a quadratic medium,�?? Phys. Rev. Lett. 74, 5036 (1995).
    [CrossRef] [PubMed]
  4. W. Torruellas, Y. Kivshar and G.I. Stegeman, �??Quadratic Solitons�??, in �??Spatial Solitons�??, S. Trillo and W. Torruellas editors (Springer-Verlag, Berlin, 2001) pp 127-168.
  5. S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, �??Quadratic solitons: Existence versus excitation,�?? IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
    [CrossRef]
  6. M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, �??Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,�?? J. Appl. Phys. 93, 8852 (2003).
    [CrossRef]
  7. R. Malendevich, L. Jankovic, S. Polyakov, R. Fuerst, G. I. Stegeman, Ch. Bosshard and P. Gunter, �??Two- Dimensional Type I Quadratic Spatial Solitons in KNbO3 Near Non-Critical Phase-Matching,�?? Opt. Lett. 27, 631 (2002).
    [CrossRef]
  8. S. Polyakov, R. Malendevich, L. Jankovic, G. Stegeman, Ch. Bosshard and P. Gunter, �??Effects of Anisotropic Diffraction on Quadratic Multi Soliton Excitation in Non-critically Phase-matched Crystals,�?? Opt. Lett. 27, 1049 (2002).
    [CrossRef]
  9. S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, �??Observation of multiple soliton generation mediated by amplification of asymmetries,�?? Phys. Rev. E 67, 046616 (2003).
    [CrossRef]
  10. S. Polyakov, L. Jankovic, H. Kim, G. Stegeman, S. Carrasco, L. Torner and M. Katz, �??Properties of Quadratic Multi-Soliton Generation Near Phase-Match in Periodically Poled Potassium Titanyl Phosphate,�?? Opt. Express 11, 1328 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1328">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1328</a>.
    [CrossRef] [PubMed]
  11. S. Minardi, G. Blasi, P. Di Trapani, A. Varanavicius, G. Valiulis, A. Berzanskis, and A. Piskarskas, �??Red solitons: evidence of spatio-temporal instability in Chi2 spatial-soliton dynamics,�?? arXiv: physics/0304030 (2003), <a href="http://arxiv.org/PS_cache/physics/pdf/0304/0304030.pdf">http://arxiv.org/PS_cache/physics/pdf/0304/0304030.pdf</a>.
  12. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, and B. Zysset, �??Refractive indices of orthorhombic KNbO3. II Phase-matching configurations for nonlinear-optical interactions,�?? J. Opt. Soc. Am. B 9, 507 (1992).
    [CrossRef]
  13. A. D. Ludlow, H. M. Nelson and S. D. Bergeson, �??Two-photon absorption in potassium niobate,�?? J. Opt. Soc. Am. B 18, 1813 (2001).
    [CrossRef]
  14. Ch. Bosshard, R. Spreiter, M. Zgonik and P. Gunter, �??Kerr Nonlinearity via Cascaded Optical Rectification and the Linear Electro-optic Effect,�?? Phys. Rev. Lett. 74, 2816 (1995).
    [CrossRef] [PubMed]

arXiv: physics/0304030 (2003) (1)

S. Minardi, G. Blasi, P. Di Trapani, A. Varanavicius, G. Valiulis, A. Berzanskis, and A. Piskarskas, �??Red solitons: evidence of spatio-temporal instability in Chi2 spatial-soliton dynamics,�?? arXiv: physics/0304030 (2003), <a href="http://arxiv.org/PS_cache/physics/pdf/0304/0304030.pdf">http://arxiv.org/PS_cache/physics/pdf/0304/0304030.pdf</a>.

IEEE J. Sel. Top. Quantum Elect. (1)

S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago, V. Couderc, and A. Barthelemy, �??Quadratic solitons: Existence versus excitation,�?? IEEE J. Sel. Top. Quantum Elect. 8, 497 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. Katz, D. Eger, H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, and L. Torner, �??Second Harmonic Generation Tuning Curves In Quasi-Phase-Matched KTP With Narrow, High Intensity Beams,�?? J. Appl. Phys. 93, 8852 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. E (1)

S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, G. I. Stegeman, J. P. Torres, L. Torner, and M. Katz, �??Observation of multiple soliton generation mediated by amplification of asymmetries,�?? Phys. Rev. E 67, 046616 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

W. E. Torruellas, Z. Wang, D J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner and C. R. Menyuk, �??Observation of two-dimensional spatial solitary waves in a quadratic medium,�?? Phys. Rev. Lett. 74, 5036 (1995).
[CrossRef] [PubMed]

Ch. Bosshard, R. Spreiter, M. Zgonik and P. Gunter, �??Kerr Nonlinearity via Cascaded Optical Rectification and the Linear Electro-optic Effect,�?? Phys. Rev. Lett. 74, 2816 (1995).
[CrossRef] [PubMed]

Spatial Solitons (1)

W. Torruellas, Y. Kivshar and G.I. Stegeman, �??Quadratic Solitons�??, in �??Spatial Solitons�??, S. Trillo and W. Torruellas editors (Springer-Verlag, Berlin, 2001) pp 127-168.

Other (2)

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman-Hall, London, 1997).

Yu.S. Kivshar and G. Agrawal, Optical Solitons, (Academic, New York, 2003).

Supplementary Material (3)

» Media 1: GIF (129 KB)     
» Media 2: GIF (288 KB)     
» Media 3: GIF (423 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A typical, experimental intensity distribution of the input beam in 2 and 3D.

Fig. 2.
Fig. 2.

(Movies 128KB, 288KB and 423KB) Three collages of output beam patterns obtained for peak input fundamental beam intensities of 8 GW/cm2, 15 GW/cm2 and 30 GW/cm2. Successive frames correspond to successive laser pulses at the same peak input intensity.

Fig. 3.
Fig. 3.

Selection of four output patterns obtained under different conditions.

Metrics