Abstract

We show that the depolarization behavior of light on propagation through a sample having a mixture of suspension of monodisperse polystyrene microspheres of two different sizes (mean diameter 0.11µm and 1.08 µm) is dominated by the smaller of the two scatterers. In contrast the estimates for the anisotropy parameter (g) for this sample, obtained from goniophotometric measurement, are observed to be closer to the value corresponding to the larger of the two scatterers. These results imply that the depolarization behavior of light in biological tissue (having a distribution of scatterer size) would be different from that of a matched monodisperse scattering sample having the same value of anisotropy parameter (g) and optical thickness (τ=µs×d, µs is scattering coefficient and d being the physical thickness).

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.D. Kim, M. Moscoso, �??Influence of the refractive index on the depolarization of multiply scattered waves,�?? Phys. Rev. E 64, 026612, 1�??4 (2001).
    [CrossRef]
  2. E.E. Gorodnichev, A.I. Kuzolov, D.B. Rozozkin, �??Diffusion of circularly polarized light in a disordered medium with large scale inhomogeneities,�?? JETP Lett. 68, 22�??28 (1998).
    [CrossRef]
  3. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, �??Depolarization of multiply scattered wave by spherical diffusers: Influence of the size parameter,�?? Phys. Rev. E 49, 1767- 1770 (1994).
    [CrossRef]
  4. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, �??Use of polarized light to discriminate short path photons in a multiply scattering medium,�?? Appl. Opt. 31, 6535-6546 (1992).
    [CrossRef] [PubMed]
  5. S.L. Jacques, R.J. Roman and K. Lee, �??Imaging skin pathology with polarized light,�?? J. Biomed. Opt. 7, 329 �??340 (2002).
    [CrossRef] [PubMed]
  6. V. Sankaran, Klaus Schonenberger, Joseph T. Walsh Jr., Duncan J. Maitland, �??Polarization discrimination of coherently propagating light in turbid media,�?? Appl. Opt. 38, 4252- 4261 (1999).
    [CrossRef]
  7. V. Sankaran, Matthew J. Everett, Joseph T. Walsh Jr. , Duncan J. Maitland, �??Comparison of polarized light propagation in biological tissue and phantoms,�?? Opt. Lett. 24, 1044-1046 (1999).
    [CrossRef]
  8. V. Sankaran, Joseph T. Walsh Jr., Duncan J. Maitland, �??Polarized light propagation through tissue phantoms containing densely packed scatterers,�?? Opt. Lett. 25, 239-241 (2000).
    [CrossRef]
  9. V. Sankaran, J. T. Walsh, Jr., and D. J. Maitland, �??Comparative study of polarized light propagation in biological tissues,�?? J. Biomed. Opt. 7, 300�??306 (2002).
    [CrossRef] [PubMed]
  10. W.F. Cheong, S.A. Prahl, A.J. Welch, �??A review of the optical properties of biological tissue,�?? IEEE J. Q.E. 26, 2166 �??2185 (1990).
    [CrossRef]
  11. N. Ghosh, P.K. Gupta, H.S. Patel, B. Jain and B.N. Singh, �??Depolarization of light in tissue phantoms �?? effect of collection geometry,�?? Opt. Commun. 222, 93 �??100 (2003).
    [CrossRef]
  12. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983).
  13. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, �??Measurement of optical transport properties of malignant and normal human breast tissues,�?? Appl. Opt. 40, 176 �??184 (2001).
    [CrossRef]
  14. E. Collett, �??Measurement of the four Stokes polarization parameters with a single circular polarizer,�?? Opt. Commun. 52, 77- 80 (1984).
    [CrossRef]
  15. A. Ishimaru, Wave propagation and scattering in random media, Vol. 1 (Academic NY 1978) Ch. 9, pp 175 �??186
  16. R. Drezek, A. Dunn, R.R. Kortum, �??Light scattering from cells: finite difference time domain simulations and goniometric measurements,�?? Appl. Opt. 39, 3651 �?? 3661 (1999).
    [CrossRef]
  17. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A.E. Sichirollo, �??Extinction and absorption coefficients and scattering phase functions of human tissues in-vitro,�?? Appl. Opt. 28, 2318 �??2324 (1989).
    [CrossRef] [PubMed]
  18. A. Kienle, F.K. Forster, R. Hibst, �??Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,�?? Opt. Lett. 26, 1571 �?? 1573 (2001).
    [CrossRef]
  19. Judith R. Mourant, James P. Frayer, Andreas H. Hielscher, Angela A. Eick, Dan Shen and Tamara M. Jhonson, �??Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,�?? Appl. Opt. 37, 3586 - 3593 (1998).
    [CrossRef]

Appl. Opt

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A.E. Sichirollo, �??Extinction and absorption coefficients and scattering phase functions of human tissues in-vitro,�?? Appl. Opt. 28, 2318 �??2324 (1989).
[CrossRef] [PubMed]

Judith R. Mourant, James P. Frayer, Andreas H. Hielscher, Angela A. Eick, Dan Shen and Tamara M. Jhonson, �??Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,�?? Appl. Opt. 37, 3586 - 3593 (1998).
[CrossRef]

Appl. Opt.

IEEE J. Q. E.

W.F. Cheong, S.A. Prahl, A.J. Welch, �??A review of the optical properties of biological tissue,�?? IEEE J. Q.E. 26, 2166 �??2185 (1990).
[CrossRef]

J. Biomed. Opt.

V. Sankaran, J. T. Walsh, Jr., and D. J. Maitland, �??Comparative study of polarized light propagation in biological tissues,�?? J. Biomed. Opt. 7, 300�??306 (2002).
[CrossRef] [PubMed]

S.L. Jacques, R.J. Roman and K. Lee, �??Imaging skin pathology with polarized light,�?? J. Biomed. Opt. 7, 329 �??340 (2002).
[CrossRef] [PubMed]

JETP Lett

E.E. Gorodnichev, A.I. Kuzolov, D.B. Rozozkin, �??Diffusion of circularly polarized light in a disordered medium with large scale inhomogeneities,�?? JETP Lett. 68, 22�??28 (1998).
[CrossRef]

Opt. Commun

E. Collett, �??Measurement of the four Stokes polarization parameters with a single circular polarizer,�?? Opt. Commun. 52, 77- 80 (1984).
[CrossRef]

Opt. Commun.

N. Ghosh, P.K. Gupta, H.S. Patel, B. Jain and B.N. Singh, �??Depolarization of light in tissue phantoms �?? effect of collection geometry,�?? Opt. Commun. 222, 93 �??100 (2003).
[CrossRef]

Opt. Lett

A. Kienle, F.K. Forster, R. Hibst, �??Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,�?? Opt. Lett. 26, 1571 �?? 1573 (2001).
[CrossRef]

Opt. Lett.

V. Sankaran, Joseph T. Walsh Jr., Duncan J. Maitland, �??Polarized light propagation through tissue phantoms containing densely packed scatterers,�?? Opt. Lett. 25, 239-241 (2000).
[CrossRef]

V. Sankaran, Matthew J. Everett, Joseph T. Walsh Jr. , Duncan J. Maitland, �??Comparison of polarized light propagation in biological tissue and phantoms,�?? Opt. Lett. 24, 1044-1046 (1999).
[CrossRef]

Phy. Rev. E

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, �??Depolarization of multiply scattered wave by spherical diffusers: Influence of the size parameter,�?? Phys. Rev. E 49, 1767- 1770 (1994).
[CrossRef]

Phys. Rev. E

A.D. Kim, M. Moscoso, �??Influence of the refractive index on the depolarization of multiply scattered waves,�?? Phys. Rev. E 64, 026612, 1�??4 (2001).
[CrossRef]

Other

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983).

A. Ishimaru, Wave propagation and scattering in random media, Vol. 1 (Academic NY 1978) Ch. 9, pp 175 �??186

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) A schematic of the experimental set -up for steady state polarization measurements. A1 and A2 are apertures, P1 and P2 are linear polarizers, QWP1 and QWP2 are quarter wave plates and L is the lens. (b) A schematic of goniophotometric set-up for the measurement of anisotropy parameter (g).

Fig. 2.
Fig. 2.

Measured spatial distribution of the degree of linear polarization (triangles) and circular polarization (circles) at the detector for (a) 0.11 µm diameter polystyrene microspheres suspension in water (g=0.09, τ=8.3) and (b) for 1.08µm diameter polystyrene microspheres suspension in water (g=0.92, τ=8.3).

Fig. 3.
Fig. 3.

Measured degree of linear polarization (triangles) and circular polarization (circles) as a function of optical thickness (τ) for (a) 0.11 µm diameter polystyrene microspheres suspension in water and (b) for 1.08µm diameter polystyrene microspheres suspension in water.

Fig. 4.
Fig. 4.

(a) The measured scattering phase function (open circles), Mie theory computed phase function (dashed line) and the double H-G fit (solid line) to the measured phase function for 0.11 µm diameter polystyrene microspheres suspension in water. Single H-G function did not produce good fit. (b) The measured scattering phase function (open circles), Mie theory computed phase function (dashed line) and the single H-G fit (solid line) to the measured phase function for 1.08 µm diameter polystyrene microspheres suspension in water. The double H-G fit and single H-G fit was indistinguishable.

Fig. 5:
Fig. 5:

(a) Measured spatial distribution of the degree of linear polarization (triangles) and circular polarization (circles) at the detector for samples prepared using 1:1 volume ratio (open symbols) and 1:2 volume ratio (solid symbols) mixtures of 0.11 µm diameter spheres and 1.08 µm diameter spheres suspensions (µs=1.66 mm-1 and τ=8.3). (b) Measured degree of linear polarization (triangles) and circular polarization (circles) as a function of optical thickness (τ) for samples prepared using 1:1 volume ratio (open symbols) and 1:2 volume ratio (solid symbols) mixtures of 0.11 µm diameter spheres and 1.08 µm diameter spheres suspensions

Fig. 6.
Fig. 6.

The measured scattering phase function (open circles), Mie theory computed phase function (line with ‘+’ symbol), single H-G fit (dashed line) and the double H-G fit (solid line) to the measured phase function for samples prepared using 1:1 volume ratio mixture of 0.11 µm diameter spheres and 1.08 µm diameter spheres suspensions.

Metrics