## Abstract

We present theoretical and experimental results which demonstrate the superior sensitivity of swept source (SS) and Fourier domain (FD) optical coherence tomography (OCT) techniques over the conventional time domain (TD) approach. We show that SS- and FD-OCT have equivalent expressions for system signal-to-noise ratio which result in a typical sensitivity advantage of 20–30dB over TD-OCT. Experimental verification is provided using two novel spectral discrimination (SD) OCT systems: a differential fiber-based 800nm FD-OCT system which employs deep-well photodiode arrays, and a differential 1300nm SS-OCT system based on a swept laser with an 87nm tuning range.

© 2003 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${P}_{Di}\left(k\right)=\u3008{\mid {E}_{Di}\left(k\right)\mid}^{2}\u3009=S\left(k\right){R}_{R}+S\left(k\right){R}_{s}+2S\left(k\right)\sqrt{{R}_{R}{R}_{S}}\mathrm{cos}\left(2k\Delta x+{\phi}_{i}\right).$$
(2)
$${D}_{i}\left[{k}_{m}\right]=\frac{1}{{2}^{i}}\rho S\left[{k}_{m}\right]\left({R}_{R}+{R}_{S}+2\sqrt{{R}_{R}{R}_{S}}\mathrm{cos}\left(2{k}_{m}\Delta x+{\phi}_{i}\right)\right).$$
(3)
$$D\left[{x}_{n}\right]=\sum _{m=1}^{M}{D}_{i}\left[{k}_{m}\right]\mathrm{Exp}\left[-j2{k}_{m}{x}_{n}\right].$$
(4)
$$D\left[{x}_{n}\right]=\sum _{m=1}^{M}\left[\left({D}^{0}\left[{k}_{m}\right]-{D}^{\mathrm{DC}}\left[{k}_{m}\right]\right)+j\left({D}^{90}\left[{k}_{m}\right]-{D}^{\mathrm{DC}}\left[{k}_{m}\right]\right)\right]\mathrm{Exp}\left[-j2{k}_{m}{x}_{n}\right].$$
(5)
$$D\left[{x}_{n}\right]=\sum _{m=1}^{M}\left(\frac{1}{2}{D}_{1}\left[{k}_{m}\right]-{D}_{2}\left[{k}_{m}\right]\right)\mathrm{Exp}\left[-j2{k}_{m}{x}_{n}\right].$$
(6)
$$D\left[{x}_{n}=\pm \Delta x\right]=\frac{1}{2}\rho \sqrt{{R}_{R}{R}_{S}}\sum _{m=1}^{M}S\left[{k}_{m}\right]=\frac{1}{2}\rho \sqrt{{R}_{R}{R}_{S}}{S}_{\mathit{ssoct}}.$$
(7)
$${\sigma}_{x}=\sqrt{\sum _{m=1}^{M}{\sigma}^{2}\left[{k}_{m}\right]}=\sqrt{e\rho \phantom{\rule{.2em}{0ex}}{R}_{R}{S}_{\mathit{ssoct}}\phantom{\rule{.2em}{0ex}}{B}_{\mathit{ssoct}}},$$
(8)
$${\mathrm{SNR}}_{\mathit{ssoct}}=\frac{\rho {R}_{S}\phantom{\rule{.2em}{0ex}}{S}_{\mathit{ssoct}}}{4e\phantom{\rule{.2em}{0ex}}{B}_{\mathit{ssoct}}}\approx M\phantom{\rule{.2em}{0ex}}\frac{\rho {R}_{S}\phantom{\rule{.2em}{0ex}}{S}_{\mathit{tdoct}}}{4e\phantom{\rule{.2em}{0ex}}{B}_{\mathit{ssoct}}}.$$
(9)
$${\mathrm{SNR}}_{\mathit{tdoct}}=\frac{\rho {R}_{S}\phantom{\rule{.2em}{0ex}}{S}_{\mathit{tdoct}}}{2e\phantom{\rule{.2em}{0ex}}{B}_{\mathit{tdoct}}}.$$
(10)
$${\mathrm{SNR}}_{\mathit{sdoct}}=\frac{\rho S{R}_{S}\phantom{\rule{.2em}{0ex}}\Delta t}{2e}.$$