Abstract

Coded apertures may be designed to modulate the visibility between source and measurement spaces such that the position of a source among N resolution cells may be discriminated using logarithm of N measurements. We use coded apertures as reference structures in a pyroelectric motion tracking system. This sensor system is capable of detecting source motion in one of the 15 cells uniformly distributed over a 1.6m×1.6m domain using 4 pyroelectric detectors.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Moini, A. Bouzerdoum, K. Eshraghian, A. Yakovleff, X. T. Guyen, A. Blanskby, R. Beare, D. Abbott and R. E. Bogner, �??An insect vision-based motion detection chip,�?? IEEE J. Solid-State Circuits 32, 279-284, (1997).
    [CrossRef]
  2. J. R. Baldwin, �??Cross-over field-of-view composite Fresnel lens for an infrared detection system,�?? Hubbell Inc., US Patent 5,442,178, (1995).
  3. J. R. Baldwin, �??Composite Fresnel lens having array of lens segments providing long narrow detection range,�?? Hubbell Inc., US Patent 5,877,499, (1999).
  4. H. L. Berman, �??Infrared intrusion alarm system with temperature responsive threshold level,�?? Optical Coating Laboratory, Inc., US Patent 4,195,234, (1980).
  5. S. D. Feller, E. Cull, D. Kowalski, K. Farlow, J. Burchett, J. Adleman, C. Lin and D. J. Brady, �??Tracking and imaging humans on heterogeneous infrared sensor array for tactical applications,�?? SPIE Aerosense 2002.
  6. W. T. Cathey, E. R. Dowski, �??New Paradigm for Imaging Systems,�?? Appl. Opt. 41, 6080-6092 (2002).
    [CrossRef] [PubMed]
  7. D. J. Brady and Z. U. Rahman, �??Integrated analysis and design of analog and digital processing in imaging systems: introduction to the feature issue,�?? Appl. Opt. 41, 6049-6049 (2002).
    [CrossRef] [PubMed]
  8. D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, �??Visible cone-beam tomography with a lensless interferometric camera,�?? Science 284, 2164-2166 (1999).
    [CrossRef] [PubMed]
  9. T. M. Cannon and E. E. Fenimore, �??Coded Aperture Imaging - Many holes make light work,�?? Opt. Eng. 19, 283-289 (1980).
  10. G. K. Skinner, �??Imaging with Coded-Aperture Masks,�?? Nucl. Instrum. Methods Phys. Res. A 221, 33-40 (1984).
    [CrossRef]
  11. A. J. Bird and M. R. Merrifield, �??X-ray all-sky monitoring and transient detection using a coded sphere telescope,�?? Aston. Astrophys. Suppl. Ser. 117, 131-136 (1996).
    [CrossRef]
  12. E. E. Fenimore, �??Coded aperture imaging: predicted performance of uniform redundant arrays,�?? Appl. Opt. 17, 3562-3569 (1978).
    [CrossRef] [PubMed]
  13. P. Potuluri, U. Gopinathan, J. R. Adleman, and D. J. Brady, �??Lensless sensor system using a reference structure,�?? Opt. Express 11, 965-974 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-965">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-965</a>.
    [CrossRef] [PubMed]
  14. J. Fraden, AIP handbook of modern sensors (American Institute of Physics, 1993), Chap. 6.

Appl. Opt. (3)

Aston. Astrophys. Suppl. Ser. (1)

A. J. Bird and M. R. Merrifield, �??X-ray all-sky monitoring and transient detection using a coded sphere telescope,�?? Aston. Astrophys. Suppl. Ser. 117, 131-136 (1996).
[CrossRef]

IEEE J. Solid-State Circuits (1)

A. Moini, A. Bouzerdoum, K. Eshraghian, A. Yakovleff, X. T. Guyen, A. Blanskby, R. Beare, D. Abbott and R. E. Bogner, �??An insect vision-based motion detection chip,�?? IEEE J. Solid-State Circuits 32, 279-284, (1997).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

G. K. Skinner, �??Imaging with Coded-Aperture Masks,�?? Nucl. Instrum. Methods Phys. Res. A 221, 33-40 (1984).
[CrossRef]

Opt. Eng. (1)

T. M. Cannon and E. E. Fenimore, �??Coded Aperture Imaging - Many holes make light work,�?? Opt. Eng. 19, 283-289 (1980).

Opt. Express (1)

Science (1)

D. L. Marks, R. A. Stack, D. J. Brady, D. C. Munson, and R. B. Brady, �??Visible cone-beam tomography with a lensless interferometric camera,�?? Science 284, 2164-2166 (1999).
[CrossRef] [PubMed]

SPIE Aerosense (1)

S. D. Feller, E. Cull, D. Kowalski, K. Farlow, J. Burchett, J. Adleman, C. Lin and D. J. Brady, �??Tracking and imaging humans on heterogeneous infrared sensor array for tactical applications,�?? SPIE Aerosense 2002.

Other (4)

J. R. Baldwin, �??Cross-over field-of-view composite Fresnel lens for an infrared detection system,�?? Hubbell Inc., US Patent 5,442,178, (1995).

J. R. Baldwin, �??Composite Fresnel lens having array of lens segments providing long narrow detection range,�?? Hubbell Inc., US Patent 5,877,499, (1999).

H. L. Berman, �??Infrared intrusion alarm system with temperature responsive threshold level,�?? Optical Coating Laboratory, Inc., US Patent 4,195,234, (1980).

J. Fraden, AIP handbook of modern sensors (American Institute of Physics, 1993), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic representation of the system model

Fig. 2.
Fig. 2.

Visibility map for each of the four points in the measurement space. The colored area has a visibility 1 and the other regions have a visibility 0

Fig. 3.
Fig. 3.

The angular response pattern of the detector f(θ) used in this work as a function of θ

Fig. 4.
Fig. 4.

The plot of response pattern of the detector f(θ) as a function of θ for a mask with a single square hole of size 2mm×2mm is shown in (a) and for a mask with two holes of sizes 2mm×2mm separated by 4mm is shown in (c). The corresponding sensor responses when a source moves at an angular velocity of 8 degrees per second at a distance 40cm is shown in (b) and (d)

Fig. 5.
Fig. 5.

The response of the four detectors shown in a single plot. The source is a hot object moving at a velocity 32cm/s at a distance of 1m from the sensor. The source moves through cells with signature vectors [0 0 1 0], [1 0 1 1], [1 1 0 1] and [1 0 0 1]

Fig. 6.
Fig. 6.

The event signal of the four detectors derived from the detector signals shown in Fig. 5

Fig. 7.
Fig. 7.

Plot showing the state vectors at different time instances as the source moves through cells with signature vectors [0 0 1 0], [1 0 1 1], [1 1 0 1] and [1 0 0 1]

Fig. 8.
Fig. 8.

Plot showing the source position at the time instants 2.6, 4, 5.3 and 6.7 seconds. The source is a robot carrying a hot object moving at a velocity of 32cm/s.

Fig. 9.
Fig. 9.

Plot showing the source position at the time instants 2.6, 3.8, 5 seconds as the source moves through cells with signature vectors [1 0 0 0], [0 1 1 1] and [1 0 0 1]. The source is a robot carrying a hot object.

Fig. 10.
Fig. 10.

Plot showing the source position at the time instants 1.8, 2.6 and 3.4 seconds as a human walks through cells with signature vectors [0 0 0 1], [1 1 0 0] and [1 0 1 0].

Tables (1)

Tables Icon

Table 1. The map showing signature vectors of different cells

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = log ( N ) m
s i ( t ) = v ( r i , r ) s ( r , t ) d r i { 1 , 2 , , N } .
m i ( t ) = h ( t t ) s i ( t ) d t i { 1 , 2 , , m } ,
m ˜ i ( t ) = f { m i ( t ) } .
s j = 1 if M = χ j .
h ( θ , t ) = f ( θ ) g ( t ) .
S ˜ = S ˜ o ( 1 e t τ e ) e t τ t

Metrics