Abstract

We describe a sensor system based on 3D ‘reference structures’ which implements a mapping from a 3D source volume on to a 2D sensor plane. The reference structure used here is a random three dimensional distribution of polystyrene beads.We show how this bead structure spatially segments the source volume and present some simple experimental results of 2D and 3D imaging.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D.J. Brady and Z.U. Rahman, �??Integrated analysis and design of analog and digital processing in imaging systems: introduction to feature issue,�?? Appl. Opt. 41, 6049-6049 (2002).
    [CrossRef] [PubMed]
  2. W.T. Cathey and E.R. Dowski, �??New paradigm for Imaging systems,�?? Appl. Opt. 41, 6080-6092 (2002).
    [CrossRef] [PubMed]
  3. G. Barbastathis and D.J. Brady, �??Multidimensional tomographic imaging using volume holography,�?? Proceedings of the IEEE 87 2098-2120 (1999).
    [CrossRef]
  4. D.L. Marks, R.A. Stack, D.J. Brady, D.C. Munson and R.B. Brady, �??Visible Cone beam tomography with a lensless interferometric camera,�?? Science 284, 1561-1564 (1999).
    [CrossRef]
  5. M.R. Descour, C.E. Volin, E.L. Derenaiak, T.M. Gleeson, M.F. Hopkins, D.W.Wilson and P.D. Maker, �??Demonstration of a computed tomography imager spectrometer using a computer-generated hologram dispenser,�?? Appl. Opt. 36, 3694-3698 (1997).
    [CrossRef] [PubMed]
  6. E.R. Dowski and W.T. Cathey, �??Extended depth of field through wave-front coding,�?? Appl. Opt. 34, 1859-1866 (1995).
    [CrossRef] [PubMed]
  7. P. Potuluri, M.R. Fetterman and D.J. Brady, �??High depth of field microscopic imaging using an interferometric camera,�?? Opt. Express 8, 624-630 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-624">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-624</a>.
    [CrossRef] [PubMed]
  8. P. Potuluri, U. Gopinathan, J.R. Adleman and D.J. Brady, �??Lensless sensor system using a reference structure,�?? Opt. Express 11, 965-974 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-965">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-965</a>.
    [CrossRef] [PubMed]
  9. T. Wilson, Confocal Microscopy (Academic Press, London, 1992).
  10. T. Cannon and E. Fenimore, �??Coded aperture imaging - many holes make light work,�?? Opt. Eng. 19 pp. 283-289, (1980).
  11. E.E. Fenimore, �??Coded aperture imaging - predicted performance of uniformly redundant arrays,�?? Appl. Opt. 17, 3562-3570 (1978).
    [CrossRef] [PubMed]
  12. A.R. Gourlay and J.B. Stephen, �??Geometric coded aperture masks,�?? Appl. Opt. 22, 4042-4047 (1983).
    [CrossRef] [PubMed]
  13. K.A. Nugent, �??Coded aperture imaging- a fourier space analysis,�?? Appl. Opt. 26, 563-569 (1987).
    [CrossRef] [PubMed]
  14. T.M. Cannon and E.E. Fenimore, �??Tomographical imaging using uniformly redundant arrays,�?? Appl. Opt. 18, 1052-1057 (1979).
    [CrossRef] [PubMed]

Appl. Opt. (8)

Opt. Eng. (1)

T. Cannon and E. Fenimore, �??Coded aperture imaging - many holes make light work,�?? Opt. Eng. 19 pp. 283-289, (1980).

Opt. Express (2)

Proceedings of the IEEE (1)

G. Barbastathis and D.J. Brady, �??Multidimensional tomographic imaging using volume holography,�?? Proceedings of the IEEE 87 2098-2120 (1999).
[CrossRef]

Science (1)

D.L. Marks, R.A. Stack, D.J. Brady, D.C. Munson and R.B. Brady, �??Visible Cone beam tomography with a lensless interferometric camera,�?? Science 284, 1561-1564 (1999).
[CrossRef]

Other (1)

T. Wilson, Confocal Microscopy (Academic Press, London, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Spatial segmentation with random 3d bead structures

Fig. 2.
Fig. 2.

Fabricated reference structure used for the experiments

Fig. 3.
Fig. 3.

An Imaging system based on random 3D bead structures

Fig. 4.
Fig. 4.

The image obtained when a fiber light source is placed in front of the structure at two positions in the source space separated by 200 µm along the lateral dimension

Fig. 5.
Fig. 5.

Difference between the two images shown in Fig. 4

Fig. 6.
Fig. 6.

Reconstructed source displayed as a 40×40 image

Fig. 7.
Fig. 7.

Reconstructed source volume consisting of a series of point sources located along the solid diagonal of a cube shaped source volume: All the reconstructions are combined together and shown as a composite 3D volume

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m i = v i ( r ) s ( r ) d r
m i = j ξ ij s j
m = ξ s

Metrics