Abstract

Spatio-spectral transmission patterns induced on low coherence fields by disordered photonic crystals can be used to construct optical spectrometers. Experimental results suggest that 1–10 nm resolution multimodal spectrometers for diffuse source analysis may be constructed using a photonic crystal mounted on a focal plane array. The relative independence of spatial and spectral modal response in photonic crystals enables high efficiency spectral analysis of diffuse sources.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Narayanaswamy, "Proceedings of the 6th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE VI," Sensors and Actuators B 90, 1-345 (2003).
    [CrossRef]
  2. M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  3. J. F. James and R. S. Sternberg, The Design of Optical Spectrometers (Chapman & Hall, London, 1969).
  4. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, "Highly dispersive photonic band-gap prism," Opt. Lett. 21, 1771-1773 (1996).
    [CrossRef] [PubMed]
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998).
    [CrossRef]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals: Toward microscale lightwave circuits," J. Lightwave Technol. 17, 2032-2038 (1999).
    [CrossRef]
  7. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  8. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, 1012-1020 (2000).
    [CrossRef]
  9. L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
    [CrossRef]
  10. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, Cambridge, 1995).
  11. D. L. Marks, R. A. Stack, and D. J. Brady, "Digital refraction distortion correction with an astigmatic coherence sensor," Appl. Opt. 41, 6050-6054 (2002).
    [CrossRef] [PubMed]
  12. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  13. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  14. S. H. Foulger, P. Jiang, A. Lattam, D. W. Smith, J. Ballato, D. E. Dausch, S. Grego, and B. R. Stoner, "Photonic crystal composites with reversible high-frequency stop band shifts," Adv. Mater. 15, 685-689 (2003).
    [CrossRef]
  15. S. H. Foulger, P. Jiang, Y. R. Ying, A. C. Lattam, D. W. Smith, and J. Ballato, "Photonic bandgap composites," Adv. Mater. 13, 1898-1901 (2001).
    [CrossRef]
  16. S. H. Foulger, S. Kotha, B. Sweryda-Krawiec, T. W. Baughman, J. M. Ballato, P. Jiang, and D. W. Smith, "Robust polymer colloidal crystal photonic bandgap structures," Opt. Lett. 25, 1300-1302 (2000).
    [CrossRef]

Adv. Mater. (2)

S. H. Foulger, P. Jiang, A. Lattam, D. W. Smith, J. Ballato, D. E. Dausch, S. Grego, and B. R. Stoner, "Photonic crystal composites with reversible high-frequency stop band shifts," Adv. Mater. 15, 685-689 (2003).
[CrossRef]

S. H. Foulger, P. Jiang, Y. R. Ying, A. C. Lattam, D. W. Smith, and J. Ballato, "Photonic bandgap composites," Adv. Mater. 13, 1898-1901 (2001).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Phys. Rev. B (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Sensors and Actuators B (1)

R. Narayanaswamy, "Proceedings of the 6th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE VI," Sensors and Actuators B 90, 1-345 (2003).
[CrossRef]

Other (2)

J. F. James and R. S. Sternberg, The Design of Optical Spectrometers (Chapman & Hall, London, 1969).

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, Cambridge, 1995).

Supplementary Material (1)

» Media 1: MPEG (800 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Proposed microspectromer based on spatio-spectral structure in the transmittance of inhomogeneous disordered photonic crystals for diffuse source characterization.

Fig. 2.
Fig. 2.

True color photographs of the photonic crystal opal structure illuminated by a white light source. (A) 20X magnification. (B) 4X magnification.

Fig. 3.
Fig. 3.

Transmission curves as a function of wavelength at points p1 through p7. The points are on a 100 micron spaced grid immediately behind the photonic crystal.

Fig. 4.
Fig. 4.

Spectral diversity map of the opal structure. The standard deviation of transmission curves (Fig. 3) was used as a metric of spectral diversity for each point of the photonic crystal. Regions 1,2, and 3 in the plot exhibit strong spectral diversities, and those regions were chosen in our spectral estimation algorithm.

Fig. 5.
Fig. 5.

(800 KB movie) A series of images at different illumination wavelength. Click here to start the movie. One can see that there are three regions with strong pattern variations corresponding to those in Fig. 4.

Fig. 6.
Fig. 6.

Spectra reconstruction. (A) Liquid crystal display (LCD) spectrum reconstruction. (B) Neon lamp spectrum reconstruction. In both (A) and (B), the red lines are true spectra taken by Ocean Optics USB2000 optic fiber spectrometer; the cyan bar plots are numerically reconstructed spectra using the photonic crystal spectrometer.

Metrics