Abstract

Color-imaging methods with an integrated compound imaging system called TOMBO (Thin observation module by bound optics) are presented. The TOMBO is a compact optoelectronic imaging system for image capturing based on compound-eye imaging and postdigital processing. First, a general description of the TOMBO system is given, and then two configurations for color imaging are described. Experimental comparison of these configurations is made by use of an experimental TOMBO system. The characteristics and the performance on the proposed methods are briefly discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, �??Thin observation module by bound optics (TOMBO): concept and experimental verification�?? Appl. Opt. 40, 1806�??1813 (2001).
    [CrossRef]
  2. J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D.Miyazaki, and Y. Ichioka, �??Compact image capturing system based on compound imaging and digital reconstruction,�?? in Micro- and Nano-optics for Optical Interconnection and Information Processing, Proc. SPIE 4455, 34�??41 (2001).
    [CrossRef]
  3. S. Ogata, J. Ishida, and T. Sasano, �??Optical sensor array in an artificial compound eye�?? Opt. Eng. 33, 3649�??3655 (1994).
    [CrossRef]
  4. J. S. Sanders and C. E. Halford, �??Design and analysis of apposition compound eye optical sensors�?? Opt. Eng. 34, 222�??235 (1995).
    [CrossRef]
  5. K. Hamanaka and H. Koshi, �??An artificial compound eye using a microlens array and its application to scale invariant processing�?? Opt. Rev. 3, 264�??268 (1996).
    [CrossRef]
  6. B. A. Wandell, A. El Gamal, and B. Girod, �??Common principles of image acquisition systems and biological vision�?? Proc. IEEE 90, 5�??17 (2002).
    [CrossRef]
  7. J. Tanida, R. Shogenji, K. Yamada, M. Miyamoto, and S. Miyatake, �??Functional extension of thin observation module by bound optics (TOMBO)�?? in Optics in Computing, OSA Technical Digest (Optical Society of America, Washington DC, 2003), pp.152�??154
  8. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, �??Reconstruction of high-resolution image on a compound-eye image capturing system�?? Appl. Opt. (submitted).

Appl. Opt. (1)

Opt. Eng. (2)

S. Ogata, J. Ishida, and T. Sasano, �??Optical sensor array in an artificial compound eye�?? Opt. Eng. 33, 3649�??3655 (1994).
[CrossRef]

J. S. Sanders and C. E. Halford, �??Design and analysis of apposition compound eye optical sensors�?? Opt. Eng. 34, 222�??235 (1995).
[CrossRef]

Opt. Rev. (1)

K. Hamanaka and H. Koshi, �??An artificial compound eye using a microlens array and its application to scale invariant processing�?? Opt. Rev. 3, 264�??268 (1996).
[CrossRef]

Optics in Computing 2003 (1)

J. Tanida, R. Shogenji, K. Yamada, M. Miyamoto, and S. Miyatake, �??Functional extension of thin observation module by bound optics (TOMBO)�?? in Optics in Computing, OSA Technical Digest (Optical Society of America, Washington DC, 2003), pp.152�??154

Proc. IEEE (1)

B. A. Wandell, A. El Gamal, and B. Girod, �??Common principles of image acquisition systems and biological vision�?? Proc. IEEE 90, 5�??17 (2002).
[CrossRef]

Proc. SPIE (1)

J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D.Miyazaki, and Y. Ichioka, �??Compact image capturing system based on compound imaging and digital reconstruction,�?? in Micro- and Nano-optics for Optical Interconnection and Information Processing, Proc. SPIE 4455, 34�??41 (2001).
[CrossRef]

Other (1)

Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, �??Reconstruction of high-resolution image on a compound-eye image capturing system�?? Appl. Opt. (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Hardware configuration of the TOMBO system.

Fig. 2.
Fig. 2.

Principle of the pixel rearrange method.

Fig. 3.
Fig. 3.

Two methods for color imaging for µ=4 and ν=8. For the color channels, green1, green2, red, and blue are assumed.

Fig. 4.
Fig. 4.

Observation direction of individual pixels. Color separation (a) by units and (b) by pixels.

Fig. 5.
Fig. 5.

Picture of an experimental TOMBO system.

Fig. 6.
Fig. 6.

Experimental result of color imaging with the color separation by units. (a) Compound image, (b) unit images, and (c) reconstructed image.

Fig. 7.
Fig. 7.

Experimental result of color imaging with the color separation by pixels. (a) Compound image, (b) unit images, (c) reconstructed image.

Fig. 8.
Fig. 8.

Experimental result of color imaging for a color chart: (a) target object, (b) reconstructed image by the method of the color separation by units, (c) reconstructed image by the method of the color separation by pixels.

Tables (1)

Tables Icon

Table 1. SNR for the Nine Parts of the Reconstructed Images *

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR = i S max i E i N

Metrics