Abstract

We use two mutually coherent, harmonically related pulse trains to experimentally characterize quantum interference control (QIC) of injected currents in low-temperature-grown gallium arsenide. We observe real-time QIC interference fringes, optimize the QIC signal fidelity, uncover critical signal dependences regarding beam spatial position on the sample, measure signal dependences on the fundamental and second harmonic average optical powers, and demonstrate signal characteristics that depend on the focused beam spot sizes. Following directly from our motivation for this study, we propose an initial experiment to measure and ultimately control the carrier-envelope phase evolution of a single octave-spanning pulse train using the QIC phenomenon.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999).
    [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  3. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, �??Controlling the phase evolution of few-cycle light pulses,�?? Phys. Rev. Lett. 85, 740-743 (2000).
    [CrossRef] [PubMed]
  4. S. T. Cundiff, �??Phase stabilization of ultrashort optical pulses,�?? J. Phys. D 35, R43-R59 (2002).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  6. R. Ell, U. Morgner, F. X. Kartner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, B. Luther-Davies, �??Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,�?? Opt. Lett. 26, 373-375 (2001).
    [CrossRef]
  7. T. M. Fortier, D. J. Jones, and S. T. Cundiff, �??Octave-spanning conventional geometry Ti:sapphire modelocked laser,�?? submitted to Opt. Lett. (2003).
    [PubMed]
  8. T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, �??Long-term carrier-envelope phase coherence,�?? Opt. Lett. 27, 1436-1438 (2002).
    [CrossRef]
  9. A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, �??Fewcycle optical waveform synthesis,�?? Appl. Phys. B 72, 977 (2001).
    [CrossRef]
  10. S. T. Cundiff, J. Ye, and J. L. Hall, �??Optical frequency synthesis based on mode-locked lasers�??, Rev. Sci. Instrum. 72, 3749-3771 (2001).
    [CrossRef]
  11. U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, �??Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,�?? Phys. Rev. Lett. 86, 5462- 5465 (2001).
    [CrossRef] [PubMed]
  12. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, �??Attosecond control of electronic processes by intense light fields,�?? Science 421, 611-615 (2003).
  13. S. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland �??An optical clock based on a single trapped 199Hg+ ion,�?? Science 293, 825-828 (2001).
    [CrossRef] [PubMed]
  14. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J.E. Sipe, �??Coherent control of photocurrent generation in bulk semiconductors,�?? Phys. Rev. Lett. 76, 1703-1706 (1996).
    [CrossRef] [PubMed]
  15. A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, �??Observation of coherently controlled photocurrent in unbiased, bulk GaAs,�?? Phys. Rev. Lett. 78, 306-309 (1997).
    [CrossRef]
  16. A. Haché, J. E. Sipe, and H. M. van Driel, �??Quantum interference control of electrical currents in GaAs,�?? IEEE J. Quantum Electron. QE-34, 1144-1154 (1998).
    [CrossRef]
  17. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, �??Ultrashort-pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-294 (1997).
    [CrossRef]
  18. Y. Suzaki and A. Tachibana, �??Measurement of the m sized radius of Gaussian laser beam using the scanning knife edge,�?? Appl. Opt. 14, 2809-2810 (1975).
    [CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, �??Ultrashort-pulse fiber ring lasers,�?? Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, �??Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,�?? Appl. Phys. B 69, 327-332 (1999).
[CrossRef]

A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, and F. Krausz, �??Fewcycle optical waveform synthesis,�?? Appl. Phys. B 72, 977 (2001).
[CrossRef]

IEEE J. Quantum Electron.

A. Haché, J. E. Sipe, and H. M. van Driel, �??Quantum interference control of electrical currents in GaAs,�?? IEEE J. Quantum Electron. QE-34, 1144-1154 (1998).
[CrossRef]

J. Phys. D

S. T. Cundiff, �??Phase stabilization of ultrashort optical pulses,�?? J. Phys. D 35, R43-R59 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, �??Controlling the phase evolution of few-cycle light pulses,�?? Phys. Rev. Lett. 85, 740-743 (2000).
[CrossRef] [PubMed]

U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kärtner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, �??Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime,�?? Phys. Rev. Lett. 86, 5462- 5465 (2001).
[CrossRef] [PubMed]

R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J.E. Sipe, �??Coherent control of photocurrent generation in bulk semiconductors,�?? Phys. Rev. Lett. 76, 1703-1706 (1996).
[CrossRef] [PubMed]

A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J. E. Sipe, and H. M. van Driel, �??Observation of coherently controlled photocurrent in unbiased, bulk GaAs,�?? Phys. Rev. Lett. 78, 306-309 (1997).
[CrossRef]

Rev. Sci. Instrum.

S. T. Cundiff, J. Ye, and J. L. Hall, �??Optical frequency synthesis based on mode-locked lasers�??, Rev. Sci. Instrum. 72, 3749-3771 (2001).
[CrossRef]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science 288, 635-639 (2000).
[CrossRef] [PubMed]

A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, �??Attosecond control of electronic processes by intense light fields,�?? Science 421, 611-615 (2003).

S. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland �??An optical clock based on a single trapped 199Hg+ ion,�?? Science 293, 825-828 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Setup used to measure the quantum interference control (QIC) signal. The 775 nm arm length was dithered for lock-in detection and the 1550 nm arm length was ramped slowly over several wavelengths to generate real-time interference fringes. The lower right inset shows an image of the LT-GaAs sample with lithographic striplines. L1-L3, lenses; M1-M3, mirrors.

Fig. 2.
Fig. 2.

Measured QIC fringes due to interference between single- and two-photon absorption. The slight dc offset is not related to the QIC phenomenon.

Fig. 3.
Fig. 3.

(a) QIC signal amplitude as a function of vertical and lateral position of the sample. The QIC signal is largest in the tab region of the sample. (b) Vertical cross-section away from the tab region. (c) Vertical cross-section through the tab region. The horizontal gray bars have the dimensions of the stripline metallization.

Fig. 4.
Fig. 4.

(a) DC offset and (b) amplitude of the QIC signal as the sample is translated through the foci of the beams (axial position) and scanned vertically. The separation of the peak dc offset from the peak amplitude indicates chromatic aberrations. The decrease in the signal amplitude in the location of the dc offset peak suggests the influence of excess carrier generation.

Fig. 5.
Fig. 5.

QIC signal amplitude as a function of fundamental (bottom axis, circles, 0.58 mW of second harmonic) and second harmonic (top axis, squares, 3.5 mW of fundamental) optical powers at the sample. The measured dependences match the linear and square root behaviors, respectively, predicted in Ref. [16].

Fig. 6.
Fig. 6.

QIC signal amplitude as a function of vertical and lateral sample position using a beam spot size diameter of (a) 37 µm, (b) 15 µm, and (c) 4 µm. The cross-sections attached to the right of each intensity plot show the relative strengths of the signals on linear scales for the three different spot sizes. We used 5.33 mW fundamental and 0.04 mW second harmonic optical power for these measurements.

Fig. 7.
Fig. 7.

Proposed experimental setup for measuring the QIC signal generated by the two spectral extremes of a single octave-spanning pulse train. In the prism-based QIC interferometer, the spectral centers of the pulses are discarded as shown to avoid excess carrier generation. Dotted lines indicate electrical paths. M1-M5, mirrors; BS, beam splitter; MS, microstructure; P1-P2, prisms.

Metrics