Abstract

We demonstrate a polarization insensitive time-division demultiplexer using semiconductor optical amplifier based nonlinear interferometer in a polarization-diversity loop. The demultiplexer had a very low switching energy (<100 femtojoules) and error-free operation in demultiplexing a 40 Gb/s input was achieved. The residual polarization dependence of the incident signal was found to be only 0.3 dB. Capability of demultiplexing at higher bit rates was proved by the ultrafast switching of 160 Gb/s pulses.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. S. Robinson, S. A. Hamilton, and E. P. Ippen �??Multiple wavelength demultiplexing using an ultrafast nonlinear interferometer�?? in Conference on Lasers and Electro-Optics Technical Digest, CLEO 2001, (Optical Society of America, Baltimore, MD, 2001), pp. 528-529.
  2. D. M. Patrick, A. D. Ellis, D. A. O Davies, M. C. Tatham, and G. Sherlock �??Demultiplexing using polarization rotation in a semiconductor laser amplifier�?? Electron Lett. 30, 341-342 (1994)
    [CrossRef]
  3. R. Ludwig and G. Raybon �??All-optical demultiplexing using ultrafast four-wave mixing in a semiconductor laser amplifier at 20 Gbit/s�?? in Proceedings of European Conference on Optical Communication, ECOC�??93 Institute of Electrical and Electronics Engineering Montreux, Switzerland, 1993, pp. 57-60.
  4. B. E. Olsson, and P. A. Andrekson, �??Polarization-independent demultiplexing in a polarization diversity nonlinear optical loop mirror,�?? IEEE Photon. Technol. Lett. 9, 764-766 (1997).
    [CrossRef]
  5. H. C. Lim, T. Sakamoto, and K. Kikuchi, �??Polarization-independent optical demultiplexing by conventional nonlinear optical loop mirror in a polarization-diversity loop configuration,�?? IEEE Photon. Technol. Lett. 12, 1704-1706 (2000).
    [CrossRef]
  6. T. Sakamoto, H. C. Lim, and K. Kikuchi, �??All-optical polarization-insensitive time-division demultiplexer using a nonlinear optical loop mirror with a pair of short polarization-maintain fibers,�?? IEEE Photon. Technol. Lett. 14, 1737-1739 (2002).
    [CrossRef]
  7. B. E. Olsson, and P. A. Andrekson, �??Polarization independent Kerr-switch using a polarization diversity loop,�?? in Proceedings of European Conference on Optical Communication, ECOC�??98, (Institute of Electrical and Electronics Engineering, Madrid, Spain, 1998), pp. 185-186
  8. Z. A. Yasa, and N. M. Amer, �??A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses,�?? Optics Commun. 36, 406-408 (1981).
    [CrossRef]
  9. M. C. Oh, M. H. Lee, and H. J. Lee, �??Polymetric waveguide polarization splitter with a buried birefringent polymer,�?? IEEE Photon. Technol. Lett. 11, 1144-1146 (1999).
    [CrossRef]
  10. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J. W. van Gaalen, Y. S. Oei, and F. H. Groen, �??A short polarization splitter without metal overlays on InGaAsP-InP,�?? IEEE Photon. Technol. Lett. 9, 209-211 (1997).
    [CrossRef]
  11. R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, �??An integrated optic adiabatic TE/TM mode splitter on silicon,�?? IEEE J. Lightwave, Technol. 11, 1806-1811 (1993).
    [CrossRef]

Conference on Lasers and Electro-Optics (1)

B. S. Robinson, S. A. Hamilton, and E. P. Ippen �??Multiple wavelength demultiplexing using an ultrafast nonlinear interferometer�?? in Conference on Lasers and Electro-Optics Technical Digest, CLEO 2001, (Optical Society of America, Baltimore, MD, 2001), pp. 528-529.

Electron Lett. (1)

D. M. Patrick, A. D. Ellis, D. A. O Davies, M. C. Tatham, and G. Sherlock �??Demultiplexing using polarization rotation in a semiconductor laser amplifier�?? Electron Lett. 30, 341-342 (1994)
[CrossRef]

IEEE J. Lightwave, Technol. (1)

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, �??An integrated optic adiabatic TE/TM mode splitter on silicon,�?? IEEE J. Lightwave, Technol. 11, 1806-1811 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. C. Oh, M. H. Lee, and H. J. Lee, �??Polymetric waveguide polarization splitter with a buried birefringent polymer,�?? IEEE Photon. Technol. Lett. 11, 1144-1146 (1999).
[CrossRef]

J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J. W. van Gaalen, Y. S. Oei, and F. H. Groen, �??A short polarization splitter without metal overlays on InGaAsP-InP,�?? IEEE Photon. Technol. Lett. 9, 209-211 (1997).
[CrossRef]

B. E. Olsson, and P. A. Andrekson, �??Polarization-independent demultiplexing in a polarization diversity nonlinear optical loop mirror,�?? IEEE Photon. Technol. Lett. 9, 764-766 (1997).
[CrossRef]

H. C. Lim, T. Sakamoto, and K. Kikuchi, �??Polarization-independent optical demultiplexing by conventional nonlinear optical loop mirror in a polarization-diversity loop configuration,�?? IEEE Photon. Technol. Lett. 12, 1704-1706 (2000).
[CrossRef]

T. Sakamoto, H. C. Lim, and K. Kikuchi, �??All-optical polarization-insensitive time-division demultiplexer using a nonlinear optical loop mirror with a pair of short polarization-maintain fibers,�?? IEEE Photon. Technol. Lett. 14, 1737-1739 (2002).
[CrossRef]

Optics Commun. (1)

Z. A. Yasa, and N. M. Amer, �??A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses,�?? Optics Commun. 36, 406-408 (1981).
[CrossRef]

Proceedings of European Conference (2)

B. E. Olsson, and P. A. Andrekson, �??Polarization independent Kerr-switch using a polarization diversity loop,�?? in Proceedings of European Conference on Optical Communication, ECOC�??98, (Institute of Electrical and Electronics Engineering, Madrid, Spain, 1998), pp. 185-186

R. Ludwig and G. Raybon �??All-optical demultiplexing using ultrafast four-wave mixing in a semiconductor laser amplifier at 20 Gbit/s�?? in Proceedings of European Conference on Optical Communication, ECOC�??93 Institute of Electrical and Electronics Engineering Montreux, Switzerland, 1993, pp. 57-60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Basic configuration of polarization diversity loop demultiplexer: PBS=Polarization Beam Splitter; ODL=optical delay line; SOA=semiconductor optical amplifier; PMF=Polarization maintaining fiber.

Fig. 2.
Fig. 2.

BER measurements of the back-to-back signal and one of the demultiplexed channels.

Fig. 3.
Fig. 3.

The eye diagrams of 40 Gb/s OTDM signal and four demultiplexed 10 Gb/s channels at the same power levels measured by 45 GHz bandwidth photodetector.

Fig. 4.
Fig. 4.

The autocorrelation traces of (a) input and (b) output ultrashort pulses.

Fig. 5.
Fig. 5.

The autocorrelation traces of (a) 160 Gb/s signal and (b) demultiplexed pulses.

Metrics