Abstract

We explore a new passive optical limiter design using transverse modulation instability in the one-dimensional photonic crystal (PC) using χ(3) materials. The performance of PC optical limiters strongly depends on the choice of the materials and the geometry and it improves as the duration of the incident pulse is extended. PC optical limiter performance is compared with that of a device made from homogeneous material. We identify three criteria for benchmarking the PC optical limiter. We also include a discussion of the advantages and disadvantages of PC optical limiters for real world applications.

© 2003 Optical Society of America

Full Article  |  PDF Article
Related Articles
Excited-state absorption-enhanced thermal optical limiting in C60

B. L. Justus, Z. H. Kafafi, and A. L. Huston
Opt. Lett. 18(19) 1603-1605 (1993)

Thermal-defocusing/scattering optical limiter

B. L. Justus, A. J. Campillo, and A. L. Huston
Opt. Lett. 19(9) 673-675 (1994)

References

  • View by:
  • |
  • |
  • |

  1. R. Knize, “Efficiency of degenerate four-wave mixing in two-level saturable absorbing medium,” Opt. Lett. 18, 1606–1608 (1993).
    [Crossref] [PubMed]
  2. P. Miles, “Bottleneck optical limiters: the optimal use of excited-state absorbers,” Appl. Opt. 30, 6965–6979 (1994).
    [Crossref]
  3. P. Miles, “Bottleneck optical pulse limiters revisited,” Appl. Opt. 38, 566–570 (1999).
    [Crossref]
  4. T. Xia, D. Hagan, A. Dogariu, A. Said, and E. Stryland, “Optimization of optical limiting devices based on excited-state absorption,” Appl. Opt. 36, 4110–4122 (1997).
    [Crossref] [PubMed]
  5. D. Kovsh, D. Hagan, and E. Stryland, “Numerical modeling of thermal refraction in liquids in the transient regime,” Opt. Express 4, 315–327 (1999). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-8-315.
    [Crossref] [PubMed]
  6. B. Justus, A. Houston, and A. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
    [Crossref]
  7. B. Justus, Z. Kafafi, and A. Huston, “Excited-state absorption-enhanced thermal optical limiting in C60,” Opt. Lett. 18, 1603–1605 (1993).
    [Crossref] [PubMed]
  8. F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
    [Crossref]
  9. M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
    [Crossref]
  10. J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
    [Crossref]
  11. J. Perry, K. Mansour, S. Marder, K. Perry, D. Alvarez, Jr., and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett. 19, 625–627 (1994).
    [Crossref] [PubMed]
  12. I. Khoo, M. Wood, B. Guenther, M. Shih, P. Chen, Z. Chen, and X. Zhang, “Nonlinear optical liquid cored fiber array and liquid crystal film for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-12-471.
    [Crossref] [PubMed]
  13. I. Khoo, M. Wood, M. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4, 432–442 (1999).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-11-432
    [Crossref] [PubMed]
  14. H.B. Lin, R.J. Tonucci, and A.J. Campillo, “Two-dimensional photonic bandgap optical limiter in the visible,” Opt. Lett. 23, 94–96 (1998).
    [Crossref]
  15. M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer “Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials,” Phys. Rev. Lett. 73, 1368 (1994).
    [Crossref] [PubMed]
  16. M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
    [Crossref]
  17. J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).
  18. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
    [Crossref]
  19. S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
    [Crossref]
  20. S. Hughes, J. Burzler, G. Spruce, and B. Wherrett, “Fast Fourier transform techniques for efficient simulation of Z-scan measurements,” J. Opt. Soc. Am. B 12, 1888–1893 (1995).
    [Crossref]
  21. S. Hughes and B. Wherrett, “Multilevel rate-equation analysis to explain the recent observations of limitations to optical limiting dyes,” Phys. Rev. A 54, 3546–3552 (1996).
    [Crossref] [PubMed]
  22. S. Hughes, “A novel computational technique for propagating picosecond, intense laser pulses through a multi-level system,” Opt. Commun. 132, 236–240 (1996).
    [Crossref]
  23. S. Hughes, J. Burzler, and T. Kobayashi, “Modeling of picosecond-pulse propagation for optical limiting applications in the visible spectrum,” J. Opt. Soc. Am. B 14, 2925–2929 (1997).
    [Crossref]
  24. C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
    [Crossref] [PubMed]
  25. J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
    [Crossref]
  26. C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
    [Crossref] [PubMed]
  27. X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
    [Crossref]
  28. J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
    [Crossref] [PubMed]
  29. J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B 19, 2282–2291 (2002).
    [Crossref]
  30. N. M. Lichinitser, C. J. McKinstrie, C. M. de Sterke, and G. P. Agrawal, “Spatiotemporal instabilities in nonlinear bulk media with Bragg gratings,” J. Opt. Soc. Am. B 18, 45–54 (2001).
    [Crossref]
  31. C.M. de Sterke, D.G. Salinas, and J. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
    [Crossref]
  32. M. Scalora and M. Crenshaw, “A beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994).
    [Crossref]
  33. S. Yang, “Optimization of passive optical limiters,” Ph.D. Dissertation, University of Central Florida, 2000.

2002 (2)

2001 (3)

N. M. Lichinitser, C. J. McKinstrie, C. M. de Sterke, and G. P. Agrawal, “Spatiotemporal instabilities in nonlinear bulk media with Bragg gratings,” J. Opt. Soc. Am. B 18, 45–54 (2001).
[Crossref]

F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
[Crossref]

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

1999 (4)

1998 (2)

1997 (2)

1996 (4)

C.M. de Sterke, D.G. Salinas, and J. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[Crossref]

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

S. Hughes and B. Wherrett, “Multilevel rate-equation analysis to explain the recent observations of limitations to optical limiting dyes,” Phys. Rev. A 54, 3546–3552 (1996).
[Crossref] [PubMed]

S. Hughes, “A novel computational technique for propagating picosecond, intense laser pulses through a multi-level system,” Opt. Commun. 132, 236–240 (1996).
[Crossref]

1995 (2)

S. Hughes, J. Burzler, G. Spruce, and B. Wherrett, “Fast Fourier transform techniques for efficient simulation of Z-scan measurements,” J. Opt. Soc. Am. B 12, 1888–1893 (1995).
[Crossref]

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

1994 (5)

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

M. Scalora and M. Crenshaw, “A beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994).
[Crossref]

J. Perry, K. Mansour, S. Marder, K. Perry, D. Alvarez, Jr., and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett. 19, 625–627 (1994).
[Crossref] [PubMed]

P. Miles, “Bottleneck optical limiters: the optimal use of excited-state absorbers,” Appl. Opt. 30, 6965–6979 (1994).
[Crossref]

1993 (4)

R. Knize, “Efficiency of degenerate four-wave mixing in two-level saturable absorbing medium,” Opt. Lett. 18, 1606–1608 (1993).
[Crossref] [PubMed]

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

B. Justus, A. Houston, and A. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[Crossref]

B. Justus, Z. Kafafi, and A. Huston, “Excited-state absorption-enhanced thermal optical limiting in C60,” Opt. Lett. 18, 1603–1605 (1993).
[Crossref] [PubMed]

Agrawal, G. P.

Alvarez, Jr., D.

Baer, E.

J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).

Bartoli, F.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Bertolotti, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Bloemer, M.

Bloemer, M.J.

M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer “Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials,” Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

Bowden, C.

Bowden, C.M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer “Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials,” Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Boyle, M.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Burzler, J.

Campillo, A.

B. Justus, A. Houston, and A. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[Crossref]

Campillo, A.J.

Centini, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

Chen, P.

Chen, Z.

Choong, I.

Clark, R.

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

Crenshaw, M.

M. Scalora and M. Crenshaw, “A beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994).
[Crossref]

D’Aguanno, G.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

de Sterke, C. M.

de Sterke, C.M.

C.M. de Sterke, D.G. Salinas, and J. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[Crossref]

Deng, X.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

Dogariu, A.

Dong, S.

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

Dowling, J.P.

M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer “Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials,” Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

Flom, S.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Flom, S.R.

J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).

Guenther, B.

Guo, F.

F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
[Crossref]

Guo, H.

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

Hagan, D.

Haus, J. W.

Hiltner, A.

J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).

Houston, A.

B. Justus, A. Houston, and A. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[Crossref]

Hughes, S.

S. Hughes, J. Burzler, and T. Kobayashi, “Modeling of picosecond-pulse propagation for optical limiting applications in the visible spectrum,” J. Opt. Soc. Am. B 14, 2925–2929 (1997).
[Crossref]

S. Hughes, “A novel computational technique for propagating picosecond, intense laser pulses through a multi-level system,” Opt. Commun. 132, 236–240 (1996).
[Crossref]

S. Hughes and B. Wherrett, “Multilevel rate-equation analysis to explain the recent observations of limitations to optical limiting dyes,” Phys. Rev. A 54, 3546–3552 (1996).
[Crossref] [PubMed]

S. Hughes, J. Burzler, G. Spruce, and B. Wherrett, “Fast Fourier transform techniques for efficient simulation of Z-scan measurements,” J. Opt. Soc. Am. B 12, 1888–1893 (1995).
[Crossref]

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

Huston, A.

Justus, B.

B. Justus, Z. Kafafi, and A. Huston, “Excited-state absorption-enhanced thermal optical limiting in C60,” Opt. Lett. 18, 1603–1605 (1993).
[Crossref] [PubMed]

B. Justus, A. Houston, and A. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[Crossref]

Kafafi, Z.

Khoo, I.

Knize, R.

Kobayashi, T.

Kovsh, D.

Larciprete, M.C.

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Li, C.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

Lichinitser, N. M.

Lin, H.B.

Liu, S.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

Lloyd, A.

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

Mansour, K.

Marder, S.

McKinstrie, C. J.

Mel’nikov, I.

Miles, P.

P. Miles, “Bottleneck optical pulse limiters revisited,” Appl. Opt. 38, 566–570 (1999).
[Crossref]

P. Miles, “Bottleneck optical limiters: the optimal use of excited-state absorbers,” Appl. Opt. 30, 6965–6979 (1994).
[Crossref]

Paolini, S.

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Penn, B.

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

Perry, J.

Perry, K.

Pong, R.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Pong, R.G.S.

J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).

Said, A.

Salinas, D.G.

C.M. de Sterke, D.G. Salinas, and J. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[Crossref]

Sanghadasa, M.

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

Sarto, F.

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Scalora, M.

J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
[Crossref] [PubMed]

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B 19, 2282–2291 (2002).
[Crossref]

M. Scalora and M. Crenshaw, “A beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994).
[Crossref]

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer “Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials,” Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

Shih, M.

Shin, I.

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

Shirk, J.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Shirk, J.S.

J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).

Si, J.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

Sibilia, C.

J. W. Haus, B. Y. Soon, M. Scalora, M. Bloemer, C. Bowden, C. Sibilia, and A. Zheltikov, “Spatiotemporal instabilities for counter-propagating waves in periodic media,” Opt. Express 10, 114–121 (2002).
[Crossref] [PubMed]

J. W. Haus, B. Y. Soon, M. Scalora, C. Sibilia, and I. Mel’nikov, “Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients,” J. Opt. Soc. Am. B 19, 2282–2291 (2002).
[Crossref]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

Sipe, J.

C.M. de Sterke, D.G. Salinas, and J. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[Crossref]

Snow, A.

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Song, Y.

F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
[Crossref]

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

Soon, B. Y.

Spruce, G.

S. Hughes, J. Burzler, G. Spruce, and B. Wherrett, “Fast Fourier transform techniques for efficient simulation of Z-scan measurements,” J. Opt. Soc. Am. B 12, 1888–1893 (1995).
[Crossref]

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

Stryland, E.

Sun, W.

F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
[Crossref]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

Tonucci, R.J.

Wang, D.

F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
[Crossref]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

Wang, H.

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

Wang, R.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

Wang, Y.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

Welford, K.

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

Wherrett, B.

S. Hughes and B. Wherrett, “Multilevel rate-equation analysis to explain the recent observations of limitations to optical limiting dyes,” Phys. Rev. A 54, 3546–3552 (1996).
[Crossref] [PubMed]

S. Hughes, J. Burzler, G. Spruce, and B. Wherrett, “Fast Fourier transform techniques for efficient simulation of Z-scan measurements,” J. Opt. Soc. Am. B 12, 1888–1893 (1995).
[Crossref]

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

Wood, M.

Xia, T.

Yang, M.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

Yang, S.

S. Yang, “Optimization of passive optical limiters,” Ph.D. Dissertation, University of Central Florida, 2000.

Zhang, L.

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

Zhang, X.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

I. Khoo, M. Wood, B. Guenther, M. Shih, P. Chen, Z. Chen, and X. Zhang, “Nonlinear optical liquid cored fiber array and liquid crystal film for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998).http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-12-471.
[Crossref] [PubMed]

Zheltikov, A.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

B. Justus, A. Houston, and A. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[Crossref]

J. Appl. Phys. (1)

M. Sanghadasa, I. Shin, R. Clark, H. Guo, and B. Penn, “Optical limiting behavior of octa-decyloxy metallo-phthalocyanines,” J. Appl. Phys. 90, 31–37 (2001).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Commun. (5)

M. Scalora and M. Crenshaw, “A beam propagation method that handles reflections,” Opt. Commun. 108, 191–196 (1994).
[Crossref]

S. Hughes, “A novel computational technique for propagating picosecond, intense laser pulses through a multi-level system,” Opt. Commun. 132, 236–240 (1996).
[Crossref]

J. Si, M. Yang, Y. Wang, L. Zhang, C. Li, D. Wang, S. Dong, and W. Sun, “Nonlinear absorption in metallo-porphyrin-like,” Opt. Commun. 109, 487–491 (1994).
[Crossref]

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[Crossref]

S. Hughes, G. Spruce, B. Wherrett, K. Welford, and A. Lloyd, “The saturation limit to picosecond, induced absorption in dyes,” Opt. Commun. 100, 113–117 (1993).
[Crossref]

Opt. Eng. (1)

F. Guo, W. Sun, D. Wang, and Y. Song, “Optical limiting of pentaazadentate complexes in solution for nanosecond pulses,” Opt. Eng. 40, 138–141 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev A (1)

C. Li, J. Si, M. Yang, R. Wang, and L. Zhang, “Excited-state nonlinear absorption in multi-energy-level molecular systems,” Phys. Rev A 51, 569–575 (1995).
[Crossref] [PubMed]

Phys. Rev. A (2)

C. Li, L. Zhang, M. Yang, H. Wang, and Y. Wang, “Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine,” Phys. Rev. A 49, 1149–1157 (1994).
[Crossref] [PubMed]

S. Hughes and B. Wherrett, “Multilevel rate-equation analysis to explain the recent observations of limitations to optical limiting dyes,” Phys. Rev. A 54, 3546–3552 (1996).
[Crossref] [PubMed]

Phys. Rev. E (1)

C.M. de Sterke, D.G. Salinas, and J. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
[Crossref]

Pure Appl. Opt. (1)

J. Shirk, R. Pong, S. Flom, F. Bartoli, M. Boyle, and A. Snow, “Lead phthalocyanine reverse saturable absorption optical limiters,” Pure Appl. Opt. 5, 701–707 (1996).
[Crossref]

Other (5)

M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer “Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials,” Phys. Rev. Lett. 73, 1368 (1994).
[Crossref] [PubMed]

M.C. Larciprete, C. Sibilia, S. Paolini, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallo-dielectric photonic band gap structures,” J. Appl. Phys. 93, 5013–5017 (2003).
[Crossref]

J.S. Shirk, R.G.S. Pong, S.R. Flom, A. Hiltner, and E. Baer, “Nonlinear nanolayered polymers: 1D photonic materials with applications to optical limiting,” Conference on Laser and Electro-Optics Europe - Technical Digest, 83–84 (2001).

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, M.J. Bloemer, and C.M. Bowden, “Energy exchange properties during second-harmonic generation in finite one-dimensional photonic band-gap structures with deep gratings,” Phys. Rev. E 67, 016606 (2003).
[Crossref]

S. Yang, “Optimization of passive optical limiters,” Ph.D. Dissertation, University of Central Florida, 2000.

Supplementary Material (8)

» Media 1: GIF (22 KB)     
» Media 2: GIF (20 KB)     
» Media 3: GIF (28 KB)     
» Media 4: GIF (21 KB)     
» Media 5: GIF (15 KB)     
» Media 6: GIF (15 KB)     
» Media 7: GIF (15 KB)     
» Media 8: GIF (15 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The (a) three-level model; and (b) the plot of transmission versus incident irradiance (normalized by the saturation irradiance Is ).

Fig. 2.
Fig. 2.

The transmission curve of an ideal optical limiter.

Fig. 3.
Fig. 3.

The animated plots of (a) transmitted/reflected output fluence versus input fluence and (b) transmission/reflection curve of the homogeneous nonlinear optical limiter with third order Kerr nonlinearities of 1+0.5i; and (c) transmitted/reflected output fluence versus input fluence and (d) transmission/reflection curve of the photonic crystal optical limiter with DC=20% and third order Kerr nonlinearities of 1+i and 1 for the respective first and second materials. [Media 1] [Media 2] [Media 3] [Media 4]

Fig. 4.
Fig. 4.

The animated transmission curves for various DC for aperture size of (a) 100%; and (b) 50%. [Media 5] [Media 6]

Fig. 5.
Fig. 5.

The animated transmission curves for elongated incident Gaussian pulse for various DC for aperture size of (a) 100%; and (b) 50%. [Media 7] [Media 8]

Tables (3)

Tables Icon

Table 1. The Figures of merit of (top) the homogeneous nonlinear optical limiter with third order Kerr nonlinearities of 1+0.5i; and (bottom) the photonic crystal optical limiter with DC=20% and third order Kerr nonlinearities of 1+i and 1 for the respective first and second materials.

Tables Icon

Table 2. The figures of merit of photonic crystal optical limiter of respective first and second materials’ Kerr nonlinearities as 1 and 1+0.5i.

Tables Icon

Table 3. The figures of merit of photonic crystal optical limiter of respective first and second materials’ Kerr nonlinearities as 1+i and 1 with the elongated version of the original Gaussian pulse

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d I ( z ) d z = α 0 [ I ( z ) R + I s I ( z ) + I s ] I ( z ) ,
T = I ( L ) I ( 0 ) = exp ( α 0 L ) [ I ( L ) R + I s I ( 0 ) R + I s ] ( 1 1 R ) ,
1 υ E f t = E f z + i F 2 E f + ( i δ α 0 2 ) E f + ( i κ 1 α 1 2 ) E b
+ i η 0 ( E f 2 + 2 E b 2 ) E f + i η 1 ( E b 2 + 2 E f 2 ) E b
+ i η 1 E f 2 E b * + i η 2 E b 2 E f * ,
1 υ E b t = E b z + i F 2 E b + ( i δ α 0 2 ) E b + ( i κ 1 α 1 2 ) E f
+ i η 0 ( E b 2 + 2 E f 2 ) E b + i η 1 ( E f 2 + 2 E b 2 ) E f
+ i η 1 E b 2 E f * + i η 2 E f 2 E b * ,
E f ( x , 0 , t ) = S ( x , z , t ) = S exp ( x 2 σ x 2 ) exp ( z 2 σ z 2 ) ,
E b ( x , L , t ) = 0 .
1 υ t [ E f E b ] = { [ z + i F 2 + i δ α 0 2 0 0 z + i F 2 + i δ α 0 2 ]
+ [ i η 0 ( E f 2 + 2 E b 2 ) + 2 i η 1 E b E f * + i η 1 E f E b * + i η 2 E b 2 E f * E f i η 1 E b 2 i η 1 E f 2 i η 0 ( E b 2 + 2 E f 2 ) + 2 i η 1 E f E b * + i η 1 E b E f * + i η 2 E f 2 E b * E b ]
+ [ 0 i κ 1 α 1 2 i κ 1 α 1 2 0 ] } [ E f E b ] .
1 υ E ( t + Δ t ) = exp ( Δ t L 2 ) exp ( Δ t K 2 ) exp ( Δ t N ) exp ( Δ t K 2 ) exp ( Δ t L 2 ) E ( t ) .
exp ( Δ t N ) exp ( Δ t N d ) + Δ t N od ,
p ( z ) = s = P s exp ( 2 π i s z d ) ,
P s = 1 d 0 d p ( z ) exp ( 2 π i s z d ) d z ,
TCR = T max T min T max + T min × 100 % = 1 ( 1 ψ ) 1 + ( 1 ψ ) × 100 % ,
TDR = T max T min = ψ .
TCO = I 90 % I 10 % I 90 % + I 10 % .

Metrics