Abstract

Based on the coupled-wave theory, a holographic spatial walk-off polarizer (HSWP) is designed. This HSWP is a transmission-type phase volume holographic grating on a substrate and its optical recording geometry can be derived from Chen’s corrected methodology with a desired reconstruction condition. A pair of fabricated HSWPs with the splitting angle of 60° is applied to assemble a new type of 4-port polarization-independent optical circulator. The operating principles and the characteristics of the proposed HSWP and the prototype optical circulator are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Ramaswami, K. N. Sivarajan, Optical networks, second ed., Morgan Kaufmann, San Francisco, 2002, p. 112-115 (Chapter 3).
  2. K. Muro, K. Shiraishi, �??Poly-Si/SiO2 laminated walk-off poalrizer having a beam-splitting angle of more than 20°,�?? J. Lightwave Technol. 16, 127-133 (1998).
    [CrossRef]
  3. J. Hecht, Understanding fiber optics, fourth ed., Prentice Hall, New Jersey, 2002, P. 346-350 (Chapter 14).
  4. L. D. Wang, �??High-isolation polarization-independent optical quasi-circulator with a simple structure,�?? Opt. Lett. 23, 549-551 (1998).
    [CrossRef]
  5. Y. K. Chen et al. �??Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 12, 1394-1396 (2000).
    [CrossRef]
  6. J. Nicholls, �??Birefringent crystals find new niche in WDM networks,�?? WDM SOLUTIONS 3, 33-36 (2001).
  7. J. Liu and R. T. Chen, �??Path-reversed substrate-guided-wave optical interconnects for wavelength-division demultiplexing,�?? Appl. Opt. 38, 3046-3052 (1999).
    [CrossRef]
  8. R. Shechter, Y. Amitai, and A. A. Friesem, �??Compact wavelength division multiplexers and demultiplexers,�?? Appl. Opt. 41, 1256-1261 (2002).
    [CrossRef] [PubMed]
  9. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Syst. Tech. J. 48, 2909-2947 (1969).
  10. J. H. Chen, D. C. Su, J. C. Su, �??Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,�?? Appl. Phys. Lett. 81, 1387-1389 (2002).
    [CrossRef]
  11. B. J. Chang, C. D. Leonard, �??Dichromated gelatin for the fabrication of holographic optical elements,�?? Appl. Opt. 18, 2407-2417 (1979).
    [CrossRef] [PubMed]
  12. D. G. McCauley, C. E. Simpson, W. J. Murbach, �??Holographic optical element for visual display applications,�?? Appl. Opt. 12, 232-242 (1973).
    [CrossRef] [PubMed]
  13. B. J. Chang, Optical information storage, Proc. SPIE 177, 71-81 (1979).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. H. Chen, D. C. Su, J. C. Su, �??Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects,�?? Appl. Phys. Lett. 81, 1387-1389 (2002).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Syst. Tech. J. 48, 2909-2947 (1969).

IEEE Photon. Technol. Lett.

Y. K. Chen et al. �??Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 12, 1394-1396 (2000).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Proc. SPIE

B. J. Chang, Optical information storage, Proc. SPIE 177, 71-81 (1979).
[CrossRef]

WDM Solutions

J. Nicholls, �??Birefringent crystals find new niche in WDM networks,�?? WDM SOLUTIONS 3, 33-36 (2001).

Other

R. Ramaswami, K. N. Sivarajan, Optical networks, second ed., Morgan Kaufmann, San Francisco, 2002, p. 112-115 (Chapter 3).

J. Hecht, Understanding fiber optics, fourth ed., Prentice Hall, New Jersey, 2002, P. 346-350 (Chapter 14).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Structure and operation principle of the holographic spatial walk-off polarizer.

Fig. 2.
Fig. 2.

Geometry for recording and reconstruction the transmission-type phase volume holographic grating considering the thickness and refractive index shifts after optical exposure and post-processing.

Fig. 3.
Fig. 3.

Structure and operation principles of the proposed 4-port polarization independent optical circulator.

Fig. 4.
Fig. 4.

Calculated diffraction efficiencies of the HSWP versus wavelength at 1300nm central wavelength.

Tables (1)

Tables Icon

Table 1. Associated losses and isolationa (in Decibels) of 4-port circulator with wavelength 1300nm by using (a) fabricated HSWPs; and (b) HSWPs with ideal diffraction efficiencies ηs<1% and ηp>99% and predicted anti-reflection coatings.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η s = sin 2 [ π n 1 d λ r 1 ( cos θ d ) 1 2 ] = sin 2 υ s ,
η p = sin 2 [ π n 1 d λ r 1 ( cos θ d ) 1 2 cos θ d ]
= sin 2 ( υ s cos θ d ) = sin 2 υ p .
η i = sin 2 ( v i 2 + ξ 2 ) ( 1 + ξ 2 v i 2 ) ( i = s , p ) ,
ξ = Δ λ K 2 d 8 π n f 2 cos θ d ,
K = ( 4 π n f 2 λ r ) · sin θ d 2 .

Metrics