Abstract

In this article the ability of ultrahigh resolution ophthalmic optical coherence tomography (OCT) to image small choroidal blood vessels below the highly reflective and absorbing retinal pigment epithelium is demonstrated for the first time. A new light source (λc=1050 nm, Δλ=165 nm, Pout=10 mW), based on a photonic crystal fiber pumped by a compact, self-starting Ti:Al2O3 laser has therefore been developed. Ex-vivo ultrahigh resolution OCT images of freshly excised pig retinas acquired with this light source demonstrate enhanced penetration into the choroid and better visualization of choroidal vessels as compared to tomograms acquired with a state-of-the art Ti:Al2O3 laser (Femtolasers Compact Pro, λc=780 nm, Δλ=160 nm, Pout=400 mW), normally used in clinical studies for in vivo ultrahigh resolution ophthalmic OCT imaging. These results were also compared with retinal tomograms acquired with a novel, spectrally broadened fiber laser (MenloSystems, λc=1350 nm, Δλ=470 nm, Pout=4 mW) permitting even greater penetration in the choroid. Due to high water absorption at longer wavelengths retinal OCT imaging at ~1300 nm may find applications in animal ophthalmic studies. Detection and follow-up of choroidal neovascularization improves early diagnosis of many retinal pathologies, e.g. age-related macular degeneration or diabetic retinopathy and can aid development of novel therapy approaches.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. Bouma and J. Tearney (ed) Handbook of Optical Coherence Tomography (Marcel Dekker Inc., 2002).
  3. A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef] [PubMed]
  4. C.A Puliafito, M.R. Hee, J.S. Schuman, and J.G. FujimotoOptical coherence tomography of ocular disease (Thorofare, New Jersey: Slack Inc., 1995).
  5. W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
    [CrossRef] [PubMed]
  6. W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).
  7. M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
    [CrossRef] [PubMed]
  8. Schmitt, S.H. Xiang, and K.M. Yung, “Differential absorption imaging with optical coherence tomography,” J.Opt. Soc. Am. A, 15, 2288–2297 (1998).
    [CrossRef]
  9. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  10. ANSI Standard Z136.1-2000.
  11. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R.S. Chuck, and R. S. Windeler, “Optimal wavelength for ultra-high resolution optical coherence tomography,” Opt. Express 11, 1411–1417 (2003).
    [CrossRef] [PubMed]
  12. B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
    [CrossRef]
  13. A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
    [CrossRef]
  14. K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad bandwidth fiber laser for sub-2 µm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003).
    [CrossRef] [PubMed]
  15. I. Hartl, X.D. Li, C. Chudoba, R. K. Ghanta, T.H. Ko, J. G. Fujimoto, J. K. Ranka, and R.S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microsctructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  16. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
    [CrossRef] [PubMed]
  17. Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
    [PubMed]
  18. N.M. Bressler, S.B. Bressler, and E.S. Gragoudas, “Clinical characteristics of choroidal neovascular membranes,” Arch Ophthalmol 105, 209–213 (1987).
    [CrossRef] [PubMed]
  19. L. M. AielloPrinciples and practice of ophthalmology: clinical practice (Saunders, Philadelphia, PA, 1994).

2003 (3)

2002 (2)

B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
[CrossRef]

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

2001 (3)

I. Hartl, X.D. Li, C. Chudoba, R. K. Ghanta, T.H. Ko, J. G. Fujimoto, J. K. Ranka, and R.S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microsctructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

1999 (1)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

1998 (1)

Schmitt, S.H. Xiang, and K.M. Yung, “Differential absorption imaging with optical coherence tomography,” J.Opt. Soc. Am. A, 15, 2288–2297 (1998).
[CrossRef]

1996 (1)

A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

1987 (1)

N.M. Bressler, S.B. Bressler, and E.S. Gragoudas, “Clinical characteristics of choroidal neovascular membranes,” Arch Ophthalmol 105, 209–213 (1987).
[CrossRef] [PubMed]

1973 (1)

Aiello, L. M.

L. M. AielloPrinciples and practice of ophthalmology: clinical practice (Saunders, Philadelphia, PA, 1994).

Apolonski, A.

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
[CrossRef]

Birks, T.A

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

Bizheva, K.

Boulton, M.E.

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

Bressler, N.M.

N.M. Bressler, S.B. Bressler, and E.S. Gragoudas, “Clinical characteristics of choroidal neovascular membranes,” Arch Ophthalmol 105, 209–213 (1987).
[CrossRef] [PubMed]

Bressler, S.B.

N.M. Bressler, S.B. Bressler, and E.S. Gragoudas, “Clinical characteristics of choroidal neovascular membranes,” Arch Ophthalmol 105, 209–213 (1987).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Chuck, R.S.

Chudoba, C.

Cubeddu, R.

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

Dayhaw-Barker, P.

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

Docchio, F.

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

Dörschel, K.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Drexler, W.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad bandwidth fiber laser for sub-2 µm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
[CrossRef]

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A.F.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

Findl, O.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

Flotte, T.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fujimoto, J.G.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

C.A Puliafito, M.R. Hee, J.S. Schuman, and J.G. FujimotoOptical coherence tomography of ocular disease (Thorofare, New Jersey: Slack Inc., 1995).

Ghanta, R. K.

Ghanta, R.K.

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

Gonzalez-Pola, C.

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Gragoudas, E.S.

N.M. Bressler, S.B. Bressler, and E.S. Gragoudas, “Clinical characteristics of choroidal neovascular membranes,” Arch Ophthalmol 105, 209–213 (1987).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Hale, G. M.

Hartl, I.

Hauswirth, W.W

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Hee, M.R.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

C.A Puliafito, M.R. Hee, J.S. Schuman, and J.G. FujimotoOptical coherence tomography of ocular disease (Thorofare, New Jersey: Slack Inc., 1995).

Herman, B.

Hermann, B.

K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact, broad bandwidth fiber laser for sub-2 µm axial resolution optical coherence tomography in the 1300 nm wavelength region,” Opt. Lett. 28, 707–709 (2003).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

Hoelzenbein, T.

Holzwarth, R.

Huang, D.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hunter, K.

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Kärtner, F.

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

Knight, J. C.

Ko, T.H.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

I. Hartl, X.D. Li, C. Chudoba, R. K. Ghanta, T.H. Ko, J. G. Fujimoto, J. K. Ranka, and R.S. Windeler, “Ultrahigh resolution optical coherence tomography using continuum generation in an air-silica microsctructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

Lewin, A.S.

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Li, Q.

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Li, X.D.

Lin, C.P.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Mei, M.

Morgner, U.

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

Müller, G.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Nelson, J.

Pehamberger, H.

Považay, B.

Puliafito, C.A

C.A Puliafito, M.R. Hee, J.S. Schuman, and J.G. FujimotoOptical coherence tomography of ocular disease (Thorofare, New Jersey: Slack Inc., 1995).

Puliafito, C.A.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Querry, M. R.

Ramponi, R.

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

Ranka, J. K.

Reiser, B.

Reitze, D.H

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

Russel, P.St.J.

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
[CrossRef]

Sattmann, H.

Scherzer, E.

Schmitt,

Schmitt, S.H. Xiang, and K.M. Yung, “Differential absorption imaging with optical coherence tomography,” J.Opt. Soc. Am. A, 15, 2288–2297 (1998).
[CrossRef]

Scholda, C.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

Schuman, J.S.

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

C.A Puliafito, M.R. Hee, J.S. Schuman, and J.G. FujimotoOptical coherence tomography of ocular disease (Thorofare, New Jersey: Slack Inc., 1995).

Stinson, W.G.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stur, M.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

Swanson, E.A.

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Timmers, A.M

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

Unterhuber, A.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
[CrossRef]

Vetterlein, M.

Wacheck, V.

Wadsworth, W.J.

B. Považay, K. Bizheva, A. Unterhuber, B. Herman, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J. C. Knight, P.St.J. Russel, M. Vetterlein, and E. Scherzer, “Sub-micrometer resolution optical coherence tomography,” Opt. Lett. 27, 1800–18024 (2002).
[CrossRef]

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

Wang, Y.

Windeler, R. S.

Windeler, R.S.

Wirtitsch, M.

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

Xiang, S.H.

Schmitt, S.H. Xiang, and K.M. Yung, “Differential absorption imaging with optical coherence tomography,” J.Opt. Soc. Am. A, 15, 2288–2297 (1998).
[CrossRef]

Yung, K.M.

Schmitt, S.H. Xiang, and K.M. Yung, “Differential absorption imaging with optical coherence tomography,” J.Opt. Soc. Am. A, 15, 2288–2297 (1998).
[CrossRef]

Appl. Opt. (1)

Arch Ophthalmol (1)

N.M. Bressler, S.B. Bressler, and E.S. Gragoudas, “Clinical characteristics of choroidal neovascular membranes,” Arch Ophthalmol 105, 209–213 (1987).
[CrossRef] [PubMed]

Arch Ophthalmol-Chic (1)

W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A.F. Fercher, “Enhanced visualization of macula pathology using ultrahigh resolution optical coherence tomography,” Arch Ophthalmol-Chic 121, 695–706 (2003).

Invest. Ophthalmol. Vis. Sci. (1)

Q. Li, A.M Timmers, K. Hunter, C. Gonzalez-Pola, A.S. Lewin, D.H Reitze, and W.W Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci. 42, 2981–2989 (2001).
[PubMed]

J. Biomed. Opt. (2)

A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circullating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4, 36–46 (1999).
[CrossRef] [PubMed]

A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

J.Opt. Soc. Am. A, (1)

Schmitt, S.H. Xiang, and K.M. Yung, “Differential absorption imaging with optical coherence tomography,” J.Opt. Soc. Am. A, 15, 2288–2297 (1998).
[CrossRef]

J.Opt.Soc.Am. B (1)

A. Apolonski, B. Považay, A. Unterhuber, T.A Birks, W.J. Wadsworth, P.St.J. Russel, and W. Drexler, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” J.Opt.Soc.Am. B 19, 2165–2170 (2002).
[CrossRef]

Nature Medicine (1)

W. Drexler, U. Morgner, R.K. Ghanta, J.S. Schuman, F. Kärtner, and J.G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nature Medicine 7, 502–507 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Science (1)

D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (1)

M.E. Boulton, F. Docchio, P. Dayhaw-Barker, R. Ramponi, and R. Cubeddu, “Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium,” Vision Res. 30, 1291 (1990).
[CrossRef] [PubMed]

Other (4)

B. Bouma and J. Tearney (ed) Handbook of Optical Coherence Tomography (Marcel Dekker Inc., 2002).

C.A Puliafito, M.R. Hee, J.S. Schuman, and J.G. FujimotoOptical coherence tomography of ocular disease (Thorofare, New Jersey: Slack Inc., 1995).

ANSI Standard Z136.1-2000.

L. M. AielloPrinciples and practice of ophthalmology: clinical practice (Saunders, Philadelphia, PA, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

In-vivo ultrahigh resolution OCT image (2700×830 pixels, 5 mm×2 mm) of human retina with areolar atrophy associated with foveomacular dystrophy, acquired with the Ti:Al2O3 light source. Solid arrows indicate intact RPE; dashed arrow indicates RPE with atrophy enabling visualization of choroidal vessels.

Fig. 2.
Fig. 2.

Output spectra (top): Ti:Al2O3 (blue line), PCF based source (green line) and fiber laser based light source (red line), overlaid with water absorption spectrum (black line). Corresponding fringe patterns produced by interfacing the light sources to the OCT system (bottom).

Fig. 3.
Fig. 3.

Ex-vivo OCT images of pig retinas, acquired with the Ti:Al2O3 source (top, at ~800 nm, SNR 105 dB, 2000×1000 pixels, 2×1 mm), PCF based source (middle, at ~1050 nm, SNR 98 dB, 2000×1010 pixels, 2×1 mm), and the fiber laser based source (bottom, at ~1350 nm, SNR 95 dB, 2000×888 pixels, 2×1 mm). Red arrows indicate choroidal blood vessels.

Fig. 4.
Fig. 4.

Ex-vivo OCT image of a pig retina, acquired with the PCF based source at ~1050 nm (2000×1010 pixels, 2 mm×1 mm). The red arrow marks a region in the choroid, where multiple small blood vessels partially filled with coagulated blood, positioned on top of each other are visible. Green arrow depicts a blood vessel on the retinal surface with reduced shadowing because of better penetration at the imaging wavelength.

Metrics