## Abstract

In a previous paper [Opt. Express **10**, 663 (2002)], the current author presented a principle and a technique allowing the transformation of a random relationship between the complex amplitudes at two wave fronts into a selective one. As the current paper shows, the same principle can be readily implemented to transmit one-dimensional images through a single multimode optical fiber.

© 2003 Optical Society of America

Full Article |

PDF Article

**OSA Recommended Articles**
### Equations (6)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$a(x\text{'},y\text{'},t)=\iint a(x,y)M\left(x\right)\mathrm{exp}\left[i\theta (x,y;x\text{'},y\text{'})\right]\mathrm{exp}\left[ik\left({\omega}_{1}x+{\omega}_{2}x\text{'}\right)\left(n-1\right)t\right]dxdy,$$
(2)
$$\int a(x\text{'},y\text{'},t){R}^{*}dt+\int a{(x\text{'},y\text{'},t)}^{*}Rdt,$$
(3)
$$a(x\text{'},y\text{'})=\iint a(x,y)M\left(x\right)\mathrm{exp}\left[i\theta (x,y;x\text{'},y\text{'})\right]\phi (x\text{'},y\text{'})dxdy,$$
(4)
$$\phi (x\text{'},y\text{'})=\frac{\mathrm{sin}\left[k\left({\omega}_{1}x+{\omega}_{2}x\text{'}\right)\left(n-1\right)\frac{T}{2}\right]}{k\left({\omega}_{1}x+{\omega}_{2}x\text{'}\right)\left(n-1\right)\frac{T}{2}}\mathrm{exp}\left[ik\left({\omega}_{1}x+{\omega}_{2}x\text{'}\right)\left(n-1\right)\frac{T}{2}\right]$$
(5)
$$x=-x\text{'}\frac{{\omega}_{2}}{{\omega}_{1}}={x}_{m}.$$
(6)
$$a(x\text{'},y\text{'})=M\left(x=-x\text{'}\frac{{\omega}_{2}}{{\omega}_{1}}\right)\int a\left(x=-x\text{'}\frac{{\omega}_{2}}{{\omega}_{1.}},y\right)\mathrm{exp}\left[i\vartheta \left(x=-x\text{'}\frac{{\omega}_{2}}{{\omega}_{1}},y;x\text{'},y\text{'}\right)\right]dy.$$